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Abstract
The recognition of dynamic scenes using 3D shapes

could provide useful approaches for various applica-
tions. However, the conventional 3D-shape sensing
systems dedicated for such scenes have had problems
in spatial resolution, though they have achieved high
sampling rate in temporal domain. In order to solve
this limits, we present a method that integrates time-
sequential partial range images capturing moving tar-
gets to reconstruct a high-resolution range image. In
the proposed method, multiple range images are set in
the same coordinate system based on multi-frame simul-
taneous alignment. This paper also demonstrates the
performance of the proposed method using some exam-
ple rigid bodies.

1. Introduction
The task we address in this paper is to realize high-

speed and high-resolution 3D-shape sensing for moving
objects in real-time. This could be promising technol-
ogy in applications where 3D recognition of dynamic
scenes is required, such as robotic control; surgical sup-
port, for example, observation of a beating heart [1];
rapid visual inspection of products; automotive applica-
tions, for example, checking road surfaces; and human-
machine interaction with high accuracy and flexibility.

In order to realize such 3D-shape sensing, there are
some challenges. In this paper, we focus on the recon-
struction of a high-resolution range image from low-
resolution, time-sequential partial data obtained by ob-
serving moving targets. The problem of this time-
sequential 3D-shape integration is divided into three
tasks: (A) segmentation of a scene into rigid bodies,
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Figure 1. Integration of time-sequential
range images.

(B) alignment of range images by estimating motion of
each rigid body, and (C) reconstruction of curved sur-
faces. The concept is shown in Figure 1. This paper
presents a method for (B).

2. Real-time 3D-shape Sensing of Mov-
ing/Deforming Objects

Conventional systems are mainly employed in sit-
uations where the relationships among the objects be-
ing measured and observation devices are completely
known, by ensuring stable or controllable conditions.
In applications where dynamic scenes are observed, this
limitation has become a critical problem.

To overcome this problem, we have developed a new
3D-shape sensing system[6]. The system acquires a
3D shape from a single image based on structured-
light-projected triangulation, allowing it to observe a
high-speed moving rigid body or a deforming or vi-
brating non-rigid body in real-time. It achieved 955-fps
throughput and 4.5-ms latency based on its high-frame-
rate imaging and high-speed image processing.

Also there is another example developed by
Rusinkiewicz [4] that has combined the structured light
method and the method aligning multiple range images.
The system achieved the full-view 3D shape reconstruc-
tion for an object moved by hand in front of the system.
Although its sensing speed is not high enough for real-
time applications, the concept is highly relevant with
our goals. This work used the Iterative Closest Point
(ICP) as the data alignment method. The method has
been widely employed and some extended ones have
been developed according to each application [5]. How-
ever, the situation where the resolution of input range
images is low have not been tried yet.

In the structured-light-based 3D-shape sensing, the
improvement of the resolution is limited by two factors.
One is the registration problem of matching the refer-
ence projected points and observed points in an image.
The other is the detection accuracy in an image. These
factors become favorable when the resolution is low and
the size of an element in a pattern whose position is
to be detected is large. Therefore, to overcome this
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Figure 2. 955 fps 3D-shape real-time sensing system[6]. The images at the center show the 3D
ball shapes extracted every 30 ms from the entire data. The right picture is the target object.

limitation, the sensing systems require a new method
to reconstruct a high-resolution range image from low-
resolution ones after data acquisition.

3. Strategy for Time-sequential Data Align-
ment

In this paper, the addressed task is motion estima-
tion and data alignment by using time-sequential range
images containing a rigid body. ICP has been effec-
tive for this type of task. This method uses two range
images and sets corresponding points in those images.
The motion of a rigid body is estimated by minimizing
the distances between those points. The main applica-
tion of this method has been model matching between
range images [7] and range-image mosaicing from large
target objects [3].

The basic framework of this method is expected to
be useful in our focused task. However, there are two
assumptions causing less-accurate alignment. First, the
low-resolution 3D point sets are assumed to be inputted.
Second, the multiple range images needs to be aligned.
The key points of our proposed method are an estima-
tion method based on setting of point to plane corre-
spondence and simultaneous optimization for rigid mo-
tions of multiple range images. Also, our method aligns
range images in a phased manner in order to maintain
stable estimation accuracy. The method is divided into
two phases: a rough alignment phase and a fine adjust-
ment phase. Details are shown in section 4 and 5, re-
spectively.

4. Shape Alignment using Two Images
Two-image alignment used in rough alignment is ba-

sically based on the ICP approach. We have two succes-
sive images I(t) and I(t + 1). The image I(t) consists
of 3D points {xi(t)|i = 1, . . . , n(t)}. Here n(t) means
the number of points in I(t). First, we need to se-
lect/generate the reference point yj(t+1) from I(t+1)
that corresponds to the target point xj(t).

Conventional approaches have mainly searched
nearest points from two images and set them as corre-
sponding points. This has not become problem in the
case using high-resolution images. However, this task

has low-resolution input images and a low likelihood of
obtaining 3D points at the same position on the target
face, which are considered to cause low-accurate align-
ment.

Those discussions suggest that it is more effective
for this task to generate a hypothetical reference point
yj(t + 1) instead of simply using nearest measured
points. Here, we employ the point-to-plane scheme. In
this scheme, the point on the plane passing through the
three points nearest the target point xj(t) is set as the
reference point yj(t + 1), as follows:

y′j =
(1 −X ′−1

n · xj)((x′
b − x′

a) × (x′
c − x′

a))
(X ′−1

n ψ) · ((x′
b − x′

a) × (x′
c − x′

a))
+ xj

(1)
Here, X ′

n = [x′
a,x′

b,x
′
c]

t are the three points near-
est the target point xj and ψ is [1, 1, 1]t. The values
with primes are the points at time (t+1). The proposed
scheme is illustrated in Figure 3. In the figure,P j(t+1)
is the plane consisting of the pointsX ′

n.
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Figure 3. Corresponding points between
two point sets.
Based on this scheme, the cost function for estima-

tion of rigid motion is as follows:

E(t) =
∑

j

‖yj(t + 1) −R(t)xj(t) − t(t)‖2 (2)

The rigid motion R(t)/t(t) at time t which mini-
mizes this function is estimated. This means that all
points on the target surface have nearest planes, and the
whole 3D shape minimizes the sum of their distances.
This assumption is considered to be valid except the ob-
jects containing jagged surface. It should be possible to
apply this method to many situations.

The algorithm steps are as follows: (1) Select
the corresponding points based on the point-to-plane



scheme. (2) Estimate the rigid motion based on the cost
function. (3) Apply the rigid motion. (4) If the value of
the cost function is small, the calculation is finished. If
not, repeat steps (1) to (3).

5. Multi-frame Time-series Simultaneous
Alignment

From the estimated motions by applying the two-
image shape alignment to all images, it is possible to
align the multiple range images in the same relative co-
ordinate system. However, this aligned image has cu-
mulative motion errors, as shown in Figure 1. In this
section, we describe fine adjustment which is achieved
by using multiple range images and optimizing the er-
rors simultaneously.

One conventional approach is the method of Neuge-
bauer [2]. This method defines the sum of the distances
between corresponding points in every pair of range
images as the cost function and estimates the multiple
motions simultaneously. However, the accuracy of this
method is not much higher than that using only two im-
ages because the reference point is calculated from a set
of points of a single range image.
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Figure 4. Selection scheme for multi-
frame alignment.
In our adjustment, a reference point is generated

by using multiple range images at once. Here, in or-
der to set a reference point corresponding to the tar-
get point xj(t), the nearest three points for the plane
[xσj

1
(t+δ1),xσj

2
(t+δ2),xσj

3
(t+δ3)] are selected from

all range images except the points in the same set in or-
der to utilize higher resolution range images. Figure 4
shows an example. In the figure, compared to the case
where only a single image is used, using multiple im-
ages to select the reference point approaches the true
position, leading to improved accuracy.

With demands of this change, the cost function is
also enhanced. In the two-image alignment method in
section 4, only the target points are moved to the refer-
ence points. In contrast, in this multi-frame alignment,
the reference points are also moved because the cost
function includes all rigid motions. Based on this, the
cost function Emulti is formulated as follows:

Emulti =
∑

t

∑

j

d(P j(t),xj(t)) (3)
d(P j(t),xj(t))

= min
u+v+w=1

‖ ux̂σj
1
(t + δ1) + vx̂σj

2
(t + δ2)

+wx̂σj
3
(t + δ3) − x̂j(t) ‖2(4)

x̂(t) = R(t)x(t) + t(t) (5)

This estimation is solved as a nonlinear minimization
problem to give the estimated motion parameters. The
algorithm steps are performed in the same way as for
the two-image alignment. Also, the image serving as
the basis of the coordinate system to which all points
are aligned is fixed.

6. Experiments
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Figure 5. Calculations performed in experiments.
The algorithm performed in the experiments is

shown in Figure 5. In the figure, each circle represents
a set of 3D points and the distances between them in-
dicate the alignment accuracy. The algorithm includes
three steps. First, the two-image alignment is applied
to two successive images. After applying the first es-
timated rigid motion, the two-image alignment is then
applied to each image and the final image again. Fi-
nally, multi-frame simultaneous alignment is applied to
all images. In this evaluation, N images were used and
the N th image was fixed.

(a) curved surface (b) rigid bodies

Figure 6. Rendered images.
First, we show the simulated results. The used vir-

tual objects were wavelike curved surface and con-
nected rigid bodies. The rendered images are shown
in Figure 6. They were discretized at intersecting points
with lines projected from an origin in a radial pattern.
In this experiments, the total number of range images
was 5 (N = 5).
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Figure 7. Initial alignment of each object.
Each initial alignment of the point set is shown in

Figure 7. The points for five images are shown in differ-
ent colors. The total number of 3D points in curved sur-
face and rigid bodies were 1,122 and 821, respectively.
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Figure 8. Aligned point set of each object.
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(a) a single range image
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(b) an aligned range image

Figure 9. Range images.
The final aligned point set is shown in Figure 8. In ad-
dition, Figure 9 shows a comparison of a single image
and an integrated image in case of rigid bodies. These
images were drawn by connecting the nearest points to
clearly show its surface shape.

The errors in curved surface obtained after two-
image alignment and multi-frame alignment were 0.12
and 0.11, respectively. Here, the error means the aver-
age distances at each point between the moved points
based on motion estimation and the true points. Also,
the errors in rigid bodies were 0.19 and 0.15. In ad-
dition, the errors in those objects after the two-image
alignment based on conventional approach, where two
nearest points were simply set as corresponding points,
were 0.27 and 0.33.
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Figure 10. Experimental setup for evaluation

Next results were obtained by using data measured in
the experimental environment shown in Figure 10. The
used object is also shown in it, whose size was 17cm
× 10cm × 6cm. Here, the developed system [6] was
used. As a reference light, 33 × 33 multi-spot pattern
was projected. The high sampling rate of this system is
expected to realize the situation, in which all we have
to do for high-resolution data acquisition is to make ob-
jects speed across the environment. The total number of
range images was 7 and the total number of points was
781. The average error at each point containing mea-
sured and aligned errors was 2.2. As shown in Figure
11 and 12, the results show our proposed method could
be applied to actual data containing some noises.
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Figure 11. Experimental results.
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Figure 12. Range images by connecting
nearest points.

7. Conclusion
In this paper, we describe a new alignment method

for reconstruction of a high-resolution 3D shape from
low-resolution, partial time-sequential range images
and evaluate its performance using some rigid bodies.
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