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Abstract
Recognition of dynamic scenes based on shape informa-

tion could be useful for various applications. In this study,
we aimed at improving the resolution of three-dimensional
(3D) data obtained from moving targets. We present a sim-
ple clean and robust method that jointly estimates motion
parameters and a high-resolution 3D shape. Experimen-
tal results are provided to illustrate the performance of the
proposed algorithm.

1. Introduction

3D shape acquisition in dynamic scenes is an important
task for various applications, including robotics, inspection,
man-machine interfaces, and so on. The quality of those
applications mainly depends on the sensing speed and res-
olution. Also, naturally, the sensing system is expected to
observe moving objects in real-time.

In related work, a new system capable of 955-fps shape
acquisition of a high-speed moving/deforming object has
been developed [19]. This performance level was achieved
by integrating high-frame-rate imaging, structured-light-
based triangulation, and high-speed parallel image process-
ing. Although the speed is sufficiently high with this ap-
proach, the resolution is limited. In observing a moving
object, it is not possible to use scanning of the reference
light source. Therefore, the developed system must obtain
the shape from a single image. In this case, the sensing
method needs an operation for matching the reference pro-
jected points and observed points, and this constraint pre-
vents an unbounded increase in the number of reference
points. In addition, in order to detect the projected pattern
with high accuracy in the image plane, the pattern density
should be designed by taking account of the image sensor
resolution.

These problems occur not just with the principle of
structured-light triangulation. Another technique for shape
acquisition is the time-of-flight method. There is a com-
mercial product that obtains 3D shapes at video frame rates
[1]. However, with this approach, too, the resolution im-
provement is limited because of the measurement accuracy.
Another technique is the so-called shape from motion [11],

which can acquire a 3D shape from video images taken by
a single camera. The problem is that the obtained 3D points
are restricted to a distinctive textured area, and therefore,
the resolution is not so high. On the other hand, a technique
known as shape from shading [12] allows high-resolution
shape acquisition from a single image, but some knowledge
of the experimental conditions is necessary in advance, in-
cluding the light source, the reflectance of the material, and
so on. This technique can only be used in rather narrow
special cases compared with the other methods mentioned
above.

The above discussion suggests that it is difficult, in terms
of the general principles of 3D shape acquisition, to im-
prove the resolution boundlessly. Therefore, these is a
strong demand for a technology that can reconstruct a high-
resolution shape after acquiring the sensing data.

We realized high-resolution shape reconstruction by in-
tegrating multiple time-sequential range images. The as-
sumed situation is that a fixed sensing system observes a
moving rigid target, or a moving sensing system observes a
static target. The changes of relative positions in the sens-
ing system and the target allow us to obtain range images
which sample different points on the target surface at differ-
ent times. These range images are expected to provide an
effective approach to shape reconstruction, where the ob-
tained resolution exceeds the limitations of the sensing sys-
tem used. This task requires two processes: registration of
range images and shape reconstruction. The two are not in-
dependent. The motion estimation for the registration needs
continuous surface information, and the shape reconstruc-
tion needs the aligned data set. This mutual dependence
between the two processes makes high-resolution shape re-
construction difficult.

This paper is organized as follows. Section 2 describes
the background of the task we focused on. Section 3 ex-
plains technical requirements for this task, and the approach
taken to achieve them. Section 4 details the proposed
method for high-resolution shape reconstruction. Section
5 presents experiments using various shape data. Section
6 concludes with a discussion of further extensions to the
method.
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2. Background

Registration and surface reconstruction of range images
are normally used in completely different applications or
are achieved separately in related tasks, because the pur-
pose of these operations is not the improvement of resolu-
tion. A well-known technique for the registration of range
images is the Iterative Closest Point (ICP) method [4]. This
method aligns two range images by minimizing the distance
of corresponding 3D point pairs. The main applications
have been model matching between range images [21] and
range-image mosaicing from large target objects [16]. Also,
the alignment of time-sequential range images obtained by
structured-light triangulation utilized this method [18].

However, when multiple range images are aligned, ICP
causes errors because the method works only for two range
images. One method focusing on a solution to this problem
is to estimate multiple motions simultaneously [15]. Also
the conventional approach for this registration has mainly
used high-resolution range images obtained by a scanning-
based sensing system. It is important to develop other meth-
ods assuming that the input data is low resolution. One
example achieved the registration of time-sequential low-
resolution multiple range images [20].

After registration, surface reconstruction is applied to the
aligned point set. In general, however, the original infor-
mation in a real image is reduced by sampling so that the
registration accuracy is considered to be insufficient for re-
constructing the original surface. In addition, in the case of
3D shape acquisition, the sampling intervals are normally
nonuniform on the surface. The problem of the registration
accuracy is considered to be critical for this situation, where
the input data is only low-resolution range images.

In related work using two-dimensional (2D) real images,
the so-called super resolution technique has been advocated
for a long time [13]. Super resolution is a technique for re-
constructing a high-resolution 2D image from multiple low-
resolution 2D images. It has been reported that it is effective
to regard super resolution as an estimation problem, where
registration and image restoration interact with each other
[10]. The motivation of our work is related to this approach.
However, the observational model and the degrees of free-
dom of motion that we have to use in the 3D task are totally
different, and thus, a new method is required.

3. Assumptions

3.1. Requirements for the task

This section describes the problems and the key ap-
proaches employed to reconstruct a high-resolution shape
from multiple range images. The framework is shown in
Figure 1. The illustration shows that the technique we focus
on here has two processes: motion estimation for registra-
tion and shape reconstruction.

measured 
range images m

rigid motions s

high-resolution
surface

shape parameters M

time

Figure 1. The process of high-resolution shape reconstruction. The
input data is multiple range images. The images sample different
points on the target surface and have different coordinate systems.
Rigid motions and the values representing the continuous surface
are mutually dependent.

As shown at the top of Figure 1, the targets captured in
the low-resolution range images are on different coordinate
systems from the base coordinate system, which the high-
resolution reconstructed target depends on. Motion estima-
tion obtains the motions (s1, s2, . . . , sN ) that align the 3D
point sets in N range images onto the base coordinate sys-
tem. Motion estimation using only observed images has an
accuracy limit, which is caused by image degradation in-
volving aliasing and measurement noise. Therefore, the es-
timation essentially needs two kinds of inputs: the measured
range images (m1,m2, . . . ,mN ) and the ideal continuous
target surface in the base coordinate system, which is repre-
sented by the parameter M . In a similar way to the motion
estimation, the shape reconstruction, which is the estima-
tion of M , needs aligned range images represented by the
parameters (m1,m2, . . . ,mN ) and (s1, s2, . . . , sN ).

Based on this discussion, these two processes, motion es-
timation and shape reconstruction, are mutually dependent,
necessitating the simultaneous estimation of all parameters.

3.2. Problem formulation

Our task is formulated as the following minimization
problem:

min
M ,s

d(ξ(M ,u), m̃(s)) (1)

Here, the function d outputs the distance between the re-
constructed shape and the range images. ξ is an example
representation of the reconstructed continuous shape sur-
face. M are the base parameters to represent it, and u are
variable values. m̃(s) is the aligned point set. These pa-
rameters are related by the following equation.

m̃(s) = {R(sf )mf,i+T (sf )|f = 1, . . . , N, i = 1, . . . , Lf}
(2)

The i-th 3D point of the f -frame range image is set
as mf,i. The f -frame rigid motion is expressed as
R(sf )/T (sf ), where sf are the motion parameters. There
are six degrees of freedom.

The minimization problem written as (1) asks technical
questions about distance and continuous shape representa-

1788



tion. First, in this paper, the distance is simply defined as
follows:

d(ξ(M ,u), m̃(s)) =
N∑

f=1

Lf∑
i=1

|Af,i(ξ)−m̃f,i(sf )|2. (3)

Here, Af,i is a function to pick up the point on the con-
tinuous target surface that corresponds to the aligned point
m̃f,i(sf ). This function A represents the observation pro-
cess involving downsampling, shown in Figure 2. This type
of observation model is introduced in the registration of
range images for the accuracy improvement [6]. Unlike the
super-resolution of a 2D image, the point spread function
due to the lens is not included in this observation model.
However, the sampling intervals are nonuniform on the ob-
served plane. Downsampling normally depends on the sens-
ing system. As an example of the observational model, in
the case of time-of-flight method, the intersection of the cor-
responding projected rays defines the point Af,i(ξ).

sensing system

aligned point

reconstructed
           surface

point on the surface

f-frame 
coordinate system

surface 
coordinate system

Rf / Tf

Figure 2. Distance between the surface and the aligned point set.
We define the distance based on the observational model.

The other problem is the representation of the continuous
surface ξ. Three representations have mainly been used: a
mesh-based surface, a parametric surface, and an implicit
surface.

The mesh representation is the simplest one. The sur-
face is represented as a set of planes connecting the element
points directly. In this case, the parameter M is the 3D
point set. In order to represent a shape with high resolution,
however, it should be large, thus making it too difficult to
solve the estimation.

The parametric surface includes a bezier surface, a nurbs
surface, and so on. Another technique considered to be ef-
fective is surface interpolation by a sinc function, because
it involves band limitation of the space-domain frequency
of the surface. In high-resolution shape reconstruction from
range images, the overfitting problem, where the estimated
shape is fitted to a misaligned point set, is an important is-
sue. A novel shape representation method, such as the sinc-
interpolation approach, can reject the noisy alignment, al-
lowing convergence to an optimized surface. In the para-
metric surface approach, the parameter M is the set of
base points, whose number is drastically decreased com-
pared with the mesh representation. However, the disad-
vantage with this approach is the need to divide the whole
shape into parts to realize high degree of freedom for the
surface, including a closed surface like a sphere. Also, the

method based on sinc-interpolation causes overshoot and
undershoot problems if the set of base points is not ade-
quately arranged.

The third representation is based on an implicit surface.
This technique represents the surface by using a scalar func-
tion f(m) at 3D position m. This function is set under the
condition that, if the point m is on the surface ξ, the func-
tion satisfies the following equation:

f(m) = 0. (4)

Recently, various implicit surface techniques have been
proposed, for example, those based on a Radial Basis Func-
tion (RBF) [5], Multi-level Partition of Unity [17], and
Moving Least Squares [3]. The implicit surface can repre-
sent various surfaces and can control the local smoothness
on the surface easily without breaking its basic formulation.

These discussions suggest that the implicit surface is an
effective shape representation because it can realize the re-
quirements of our reverse problem, such as small variable
estimated parameters, high-degree of freedom of the sur-
face, and easy control of local surface changes. In this
paper, therefore, we employed the method using RBF [5].
This function has the form

f(m) = p(m) +
NB∑
i=1

λiφ(|m−mi|) (5)

where p is a polynomial function, and φ is a basic func-
tion, which includes the biharmonic spline φ(r) = r, the
thin-plate spline φ(r) = r2log(r), and so on. In this paper,
we used the biharmonic spline.

4. High-resolution Shape Reconstruction from
Multiple Range Images

4.1. Overview

As mentioned in the previous section, the shape M and
motion s must be estimated at once. However, it is difficult
to achieve this with high estimation accuracy. Therefore,
we propose the following approximated simultaneous esti-
mation:

1. Get the initialized shape parameters M0.

2. Estimate the motions si by using the estimated shape
parameters M i−1.

3. Estimate the shape parameters M i from the point set
aligned by the estimated motions si.

4. Repeat steps 2 and 3 until convergence.

This method estimates the motions and shape alternately.
By repeating the cycle, we can obtain a converged solution.
However, in the beginning cycles, the input point set is not
aligned correctly so that the input data in the shape recon-
struction is regarded as being noisy. On the other hand, in
the last cycles, where the point set is expected to be aligned
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correctly, the input data in the reconstruction is considered
to have less noise. This suggests that the conditions to the
data in the shape reconstruction should be changed as the
iterative estimation process proceeds. The details are de-
scribed in the following sections.

4.2. Motion estimation with implicit surface

In the motion estimation, the target shape is fixed. The
task is to estimate the motions that bring the point set closer
to the base coordinate system. However, both the input
point set and the target surface are assumed to have er-
rors caused by estimation errors and measurement noise.
These problems cause a situation where some points can-
not be placed close to the surface. Therefore, our motion
estimation requires a robust estimation technique. The pro-
posed method is based on RANdom SAmple Consensus
(RANSAC) [9]. With this method, N motions for N frames
can be estimated individually. The details of the first part of
each motion estimation are listed below.

1. Randomly select lr points from the f -frame data set
mf .

2. Decide the correspondences Af,i(ξ) to the selected
points xf,i based on the observational model.

3. Estimate the motion minimizing the sum of the dis-
tances of the points xf and Af (ξ).

4. Calculate the distance between the surface and all
moved points m̃f .

5. Count the number of points whose distance is within a
threshold.

6. Repeat steps 1 to 5 and choose the solution with the
largest score.

In step 2, the correspondences are decided based on the
observational model. In the time-of-flight case, the intersec-
tion of the surface and the projected ray passing through the
point xf,i is considered to be the correspondence Af,i(ξ).
This is shown in Figure 2. The observational model can be
tuned according to the sensor system.

The minimization problem in step 3 is formulated as:

min
ŝf

lr∑
i=1

|Af,i(ξ)−R(ŝf )xf,i − T (ŝf )|2. (6)

Several solutions have been proposed for this type of
rigid motion estimation [8].

The above steps provide the temporal solution for f -
frame motion ŝf . Using this motion ŝf , the f -frame point
set can be divided into inliers and outliers. The operation is
based on the distance to the surface. After these operations,
optimal estimation is applied. Optimal estimation has two
steps. First, motion is estimated in similar ways in steps
2 and 3 by using only L′f inlier points which are obtained

by the above steps. After this estimation, estimation based
on the following minimization problem is applied as a final
adjustment:

min
sf

∑
i∈L′

f inliers

f(m̃f,i(sf ))2. (7)

This estimation is solved by using a non-linear estima-
tion method. As the initial values, we used the parameters
estimated by the first step of the optimal estimation. This
estimation allows us to obtain the optimized solutions for
the shape reconstruction based on an implicit surface.

4.3. Shape reconstruction

The shape surface ξ is estimated from the aligned point
set m̃. The shape reconstruction problem is formulated as:

min
M

N∑
f=1

Lf∑
i=1

|Af,i(ξ)− m̃f,i(sf )|2 + g(ξ). (8)

We need to estimate the parameters M representing the
surface of the target shape. The function g is the constraint
for the surface. Shape reconstruction based on the implicit
surface approximately replaces this problem with:

min
f
‖f‖2 +

N∑
f=1

Lf +α∑
i=1

1
ρf

(f(m̃f,i(sf ))− ff,i)2. (9)

The constraints part g is replaced by the first term, which
is described by:

‖f‖2 =
∫

R3

(
∂2f(m)

∂x2

)2

+
(

∂2f(m)
∂y2

)2

+
(

∂2f(m)
∂z2

)2

+

2
(

∂2f(m)
∂x∂y

)2

+ 2
(

∂2f(m)
∂x∂z

)2

+ 2
(

∂2f(m)
∂y∂z

)2

dm. (10)

The parameter ff,i in (9) is a given parameter to define
the scalar function f(m). The second term of (9) has addi-
tional given points that are not included in the aligned point
set and are defined to have non-zero values to solve this
problem correctly.

Also, the problem (9) has new parameter ρf . Consid-
ering that the estimated motions have errors, exact fitting
causes the problem of overfitting. Thus, the weight of each
frame’s point set depends on the accuracy of the motion es-
timation. The implicit surface based on the RBF function
allows this approach to be realized simply by using this pa-
rameter ρf . The parameter ρf controls the weight of the
input data. If the parameter ρf is small, the reconstructed
shape surface passes the f -frame point set. If the parameter
ρf is large, the f -frame point set is regarded as noisy data,
and smooth interpolation is achieved.

It has been shown that the solution of (9) is obtained by
solving the linear system [7], given by:
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(
A− diag(ρ) P

P T 0

)(
λ
c

)
=

(
f
0

)
(11)

where Ap,q = φ(|mp − mq|), and Pp,q = pq(mp).
Here, pq is the q-th value of the polynomial function p(m).
Also diag(ρ) is the diagonal matrix with the elements ρ.
The point value with a single suffix means mp = mi,j ,
where p =

∑i
f=2 Lf−1 + j.

5. Experiments

5.1. Stanford bunny

Figure 3. Stanford bunny.

We evaluated the proposed method with some example
shapes. The first one was the Stanford bunny. The 3D data
of the Stanford bunny was obtained from [2]. The rendered
shape is shown in Figure 3. The number of mesh triangles
constructing the Stanford bunny was 69,451. The size was
78× 77× 60.

The intersecting points with lines projected in a radial
pattern were used as the measured points. At each frame,
the target was moved by rotation and translation. The rota-
tion axis was (1, 1, 0), the rotation angle was 0.03 rad, and
the translation was (0.2, 0.2,−0.15). The total number of
frames was 30. The total number of 3D points was 1,561.
The coordinate system of the 15-th frame (base frame) was
set as a base coordinate system and was fixed. The mo-
tions of point sets in other frames, which approached the
base coordinate system, were estimated. Figure 4 (a) shows
a single range image in the base frame. The initial shape
surface is shown in Figure 4 (b). The surface was estimated
from the point set in the base frame. The initial surface was
estimated with an implicit surface using the RBF function,
as described above. The mesh for surface rendering was
extracted by the technique called Marching Cubes [14].

In the calculations, the number of selected points in
RANSAC motion estimation lr was 8, and the number of
iterations was 30. The number of iterations for motion esti-
mation and shape reconstruction was 5. Also, in this ex-
periment, the constraints ρ in shape reconstruction were
simply set. Since input points in the base frame are defi-
nitely on the surface, zero values were provided. Also for
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Figure 4. A single range image of the Stanford bunny. (a) A single
range image in the base coordinate system. (b) An initial shape
surface was estimated from a single range image in the base frame.
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Figure 5. The registration of the Stanford bunny. (a) The point
set before registration. There are point sets for 30 frames. (b) An
aligned point set is drawn. The proposed method aligned 30 frame
point sets correctly.

Figure 6. The shape reconstruction of the Stanford bunny. The
reconstructed surface was rendered.

the other points, the same balance parameters were globally
provided. In addition, the parameters were changed so as
to become smaller with every iteration. This is because the
accuracy of the surface was expected to improve with each
iteration.

Figure 5 (a) shows all point sets for 30 frames before
registration. The aligned point set after 5 iterations is shown
in Figure 5 (b). Compared with Figure 5 (a), the point set
was aligned correctly. The reconstructed shape is shown in
Figure 6. The face and foot of the bunny, which could not
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be found in the initial shape surface shown in Figure 4 (b),
newly appeared in the final shape.

Figure 7. The estimated shape of the Stanford bunny in the com-
parative method.

In addition, we compared the results with another
method. In the comparative method, registration and shape
reconstruction were carried out separately, as in the conven-
tional approaches. The registration was achieved based on
ICP. ICP was iteratively applied to two range images, the
base frame and other frames. The correspondence pair in
ICP was set as the closest points in two point sets. After
that, the surface was interpolated with an implicit surface
using the RBF function. The interpolated surface is shown
in Figure 7.

The surface accuracy in the proposed method and the
comparative one was evaluated based on the distance of the
points on the estimated surface and the true one. The points
at the same (x, y) position were selected as the correspon-
dence pair. As a result, the average accuracy per evaluated
point using the comparative method was 1.11. The accuracy
using the proposed method was 0.40. The accuracy was im-
proved with every iteration. The changes of the values were
(0.89, 0.78, 0.71, 0.41, 0.40).

5.2. Bird doll

(a) (b)

Figure 8. Bird doll. (a) A picture of the object. (b) The shape of
the bird doll. The shape was measured with the laser scanner.

The second example was a bird doll. A picture of this
doll is shown in Figure 8 (a). The detailed shape of this
object was obtained by a 3D laser scanner (Roland LPX-
600). The scanned shape is shown in Figure 8 (b). The
number of mesh triangles constructing this bird doll was
288,300. The size was 68 mm× 65 mm× 58 mm. By using
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Figure 9. A single range image of the bird doll. (a) A single range
image in the base coordinate system. (b) Initial shape surface was
estimated from a single range image in the base frame.
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Figure 10. The registration of the bird doll. (a) The point set before
registration. There are point sets of 20 frames. (b) An aligned
point set was drawn. The proposed method aligned 20 frame point
sets correctly.

Figure 11. The shape reconstruction of the bird doll. The recon-
structed shape surface was rendered.

this data, the input range images for this experiment were
created with the same method as in the previous section.

In this experiment, the rotation axis was set as (0, 1, 0),
the rotation angle per a frame was 0.05rad, the and trans-
lation per a frame was (0.5 mm, 0.5 mm,−0.3 mm). The
total number of frames was 20, and the total number of 3D
points was 1,269. The base coordinate system was the 10-th
frame. Figure 9 (a) shows a single range image in the base
frame. The initial shape surface is shown in Figure 9 (b).

The parameter settings were the same as in the experi-
ment described above. Figure 10 (a) shows all point sets
before registration. The aligned point set after 5 iterations
is shown in Figure 10 (b). The reconstructed shape is shown
in Figure 11. The distinctive changes from the initial shape
surface can be found in the beak, the jut on the back of the
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head, and the tail, which cannot be obtained from a single
frame.

Figure 12. The estimated shape of the bird doll in the comparative
method.

The evaluation was performed in a similar way to the
previous experiment. The estimated shape in the compara-
tive method is shown in Figure 12. The accuracy per evalu-
ated point using the comparative method was 1.64 mm. The
accuracy using the proposed method was 0.25 mm. The
changes of the accuracy at every cycle were (0.44, 0.41,
0.40, 0.26, 0.25).

5.3. Ashtray

a moving ashtray

camera

IR pattern
    projector

a captured image

Figure 13. Picture of sensing system and one of the captured im-
ages. The each spot in an image was converted to a 3D point based
on triangulation.

In this experiment, we used the data obtained by a
structured-light sensing system. The system projected a
1,000-spot pattern (StockYale pattern projector) onto the
target and triangulated at each spot based on the position ob-
served in the captured image plane. The camera (Mikrotron
Eosens) captured the scene at a frame rate of 500 fps. The
resolution was 1,280 × 1,024. A picture of the system is
shown in Figure 13. The target was moved within the mea-
sured area. The captured image during the measurement is
also shown in Figure 13. The measured target was an ash-
tray (Figure 14). The size was 107 mm × 108 mm × 27
mm.

In this experiment, the rotation axis was (0, 0, 1), the ro-
tation angle per a frame was 0.02 rad, and the translation per
a frame was (−0.8 mm,−1.2 mm, 0.0 mm), which were es-
timated parameters. The total number of frames was 20, and

Figure 14. Ashtray.
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Figure 15. A single range image of the ashtray. (a) A single range
image in the base coordinate system. (b) The initial shape surface
was estimated from a single range image in the base frame.
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Figure 16. The registration of the ashtray. (a) The point set before
registration. There are point sets of 20 frames. (b) An aligned
point set was drawn. The proposed method aligned 20 frame point
sets correctly.

Figure 17. The shape reconstruction of the ashtray. The recon-
structed shape surface is rendered.

the total number of 3D points was 2,498. The base coordi-
nate system was the 10-th frame. Figure 15 (a) shows a sin-
gle range image in the base frame. The initial shape surface
is shown in Figure 15 (b). The measured noise was consid-
ered to be larger than the experiments mentioned above.

The parameter settings were the same as in the previous
experiments. Figure 16 (a) shows all point sets before reg-
istration. The aligned point set after 5 iterations is shown
in Figure 16 (b). The reconstructed shape is shown in Fig-
ure 17. The corner shape at the top is cleanly represented in
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the reconstructed shape. Evaluation of this data is left as the
topic of future work because the orientations of the true sur-
face and the measured one in the base frame were difficult
to match.

6. Conclusion

High-resolution shape reconstruction from acquired
range images is a highly promising technique for various
applications, regardless of sensing principle. This task in-
volves two processes: registration and surface reconstruc-
tion. Those processes are essentially interrelated problems,
and performing registration using only the acquired range
images causes errors because of the image degradation in-
volving aliasing and measured noise. Also, the shape sur-
face representation needs to have a continuous form and a
high degree of freedom with a compact data set. In addition,
local smoothness control is an important issue for surface
reconstruction.

Based on these requirements, in this paper, we present
an algorithm for estimating the motions and surface jointly.
The method realized shape reconstruction based on an im-
plicit surface obtained using an RBF function. We demon-
strated the potential of this approach with three kinds of real
shapes. The experiments were successfully achieved. The
obtained results show that we can see details on the surface
that cannot be found in a single range image.

As future work, we think it is important to develop a
more effective technique to control the parameters for con-
straints in the process of shape reconstruction. Also, al-
though the described experiment observes the smaller ob-
ject than measured range, it is important to reconstruct a
large object. This problem could be solved by enlarging the
base shape based on the estimated results. In addition, an
improvement in calculation speed, possibly by using a par-
allel processing module, is required in order to combine this
approach with a real-time sensing system.
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