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e Theorem: (Novikoff) Let S be a non-trivial training set, and

let
R = max||x;]|.
1<l
Suppose that there exists a vector w,y, such that ||wey|| =1
and

yi(<w0pt7 CBZ> + bopt) > 7
for 1 < 4f. Then the number of mistakes made by the on-line
perceptron algorithm on .S is at most
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Define #; = (x!, R)T,w = (w’,b/R)’. Let w;_; be the aug-
mented weight vector prior to the tth mistake. The ¢th update is
performed when

Yi (Wi—1, i) = yi((wi—1, ;) + by—1) <0

where (;,y;) is the point incorrectly classified by w;_1. The up-
date is the following:

w, = |
"l b/R

= | O | | = o+ g,
bt—l/R 1 R t—1 1y

where b, = b;_1 + ny; R%. Since the margin is v, we have
<ﬁ]tv "bOpt> = <"bt—1> "b0pt> + NY; <5sz'> ’&Jopt> > <’ﬁ)2'_1, "b0pt> + Ny
and this implies that
(Wy, Wopt) = tryy
Similarly, we have

wi|® = ||wea|]® + 20y (w1, &) + 07| 2|
> lwia||*+ nPl|@)® = |wia|)® + 07 (|a]||” + R?),

which implies ||w;||* > ||w;—1]|* + n* R?. Thus we have
[, |* > 2t R*.
The two inequalities combined give the ‘squeezing’ relations
lwoptllv2tn R > Jwopd|[Jws | = (i, Wopr) >ty

doop[2 < w2 +1 = 2)

which together imply the bound (note

R\? . . 2R\?
t<2 () el < (27
8 8
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e Formulation: (Optimization problem) Given functions f,
gi,1=1,...,k,and h;, 2 = 1,...,m, defined on a domain
(2 C R", optimization problem is formalized as follows:

minimize f(w), w € ()
subject to g;(w) <0, i=1,...,k
hz(’UJ):O, izl,...,m
where f is called the objective function, and the remaining

relations are called, respectively, the inequality and equality
constraints.

e Definition: (Convexity) A real-valued function f(w) is called
convez for w € R" if Yw,u € R", and for any 0 € (0, 1),

f0w+ (1 =0)u) <Of(w)+(1—-0)f(u)

e Theorem: (Fermat) A necessary condition for w* to be a
minimum of a function f(w) is

Of (w*)
ow

This condition, together with convexity of f, is also sufficient.

= 0.
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Lagrange [

e Definition: (Lagrangian) Given an optimization problem with
objective function f(w), and equality constraints h;(w) = 0,
1 =1,...,m, we define the Lagrangian function as

L(w,B) = f(w) + g:l Bihi(w)

where the coeflicients (; are called the Lagrange multipliers.

e Theorem: (Lagrange) A necessary condition for a point w*

to be a minimum of f(w) subject to h;(w) =0,i=1,...,m,
18
OL(w*, 37)
=0
Ow
OL(w*,B3") 0
0B B

for some values 3*. The above conditions are also sufficient
provided that L(w, 3%) is a convex function of w.

ggoboobooodan 4



Kuhn-Tucker [J

e Definition: (generalized Lagrangian) Given an optimization
problem with domain 2 C R",

minimize f(w), w € ()
subject to g;(w) <0, i=1,...,k
hi(’UJ):O,Z'Zl,...,m

we define the generalized Lagrangian function as

Llw,.8) = f(w)+ X aigi(w) + & fihi(aw)
= f(w) +a'g(w) + B h(w)

e Theorem: (Kuhn-Tucker) Sufficient conditions for a point
w* to be an optimum are the existence of a*, 3" such that

OL(w*, a*, 3")

=0
Ow ’
OL(w*, a*,3") 0
9J6; -
ag(w’) =0, i=1,...,k,
gz(w*) < Oa 2217” 7k7
a >0, i=1,...,k
o 11
maximize T + Yy
subject to 2+ 9> <1, x>0, y>0
o [1[]2

maximize (z —1)*+ (y — 1)?
subject to x+2y <1, x>0, y>0
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Kuhn-Tucker O (O 0O)

o [1[] 1:
J

8

() = —z—y
(z) = 22 +9y° —1
o) = —u
s(x) = —y
DDDDDDD:%DDDDDDDDDD
@) = (~1,-1)
Dgi(x) = (27,2y)
(x) = (=1,0)
Dgs(x) = (0,-1)
Jdoooodooodd
0 = (—1,—1) + a1 (2, 2y) + ao(—1,0) + a3(0, —1)
o (z® +y* — 1)
ap(—1)
as(—y)
Q; 0

Jooon

<

Q
8

Ne—rt' N N N~

Q

0
0
0

IV

lLLe>0y>00000a =a3=000000 2042 =
2y = 1000002000000 >000000

Oa=1/vV2,2=1/v/2,y=1/v/20000
2.r=0000001000a,=-1000000
3.9y=0000001000=-1000000

00000000000 (z,y) = (1/v2,1/v2)0
e002 00000000 (z,y)=(0,0)0
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e Functional margin: v = y((w, x) + b)

7 T
[l
[l
G'D D E
= 0
]
5 O O
. [l
[l
4 X 0] U
[l
3 X %
[l
2_
XX X
1 X
X
0 IX 1
0 1 2 3 4 5 6 7

e Scale w and b so that: y;({(w,x;) +b) > 1 Vi

e Support vectors: &, &~

(w, ") +b=1,

e Geometric margin: d

(w,z7)+b=-1

d = ;(<H:"0Hw+>) - (<H"w"”w>)

ggoboobooodan



000000000 (Primal form)

Proposition: Given a linearly separable training sample

S = ((wla y1)7 sy (mfa yﬁ))
the hyperplane (w, b) that solves the optimization problem

minimizeqy, (W, w)
subject to  y;((w,x;) +b) > 1, for 1 =1,...,¢
realizes the maximal margin hyperplane with geometric margin v =
1/||wl].
e Lagrangian
1 ¢
L(w,b,a) = 5 (w,w) — Y oly;((w;, ;) + b) — 1]
i=1
where a; > 0 are Lagrange multipliers. Imposing stationarity
condition, we have

L b 4
OLw,ba) _ w— > yiox; =0,
ow i=1
OL(w, b, ) 4
= O = 0.
0b Ely “

Substituting these into the primal to obtain
0 1 ¢ ¢

L(w,b,a) = > — S 2L Yy DL YiQy (i, x;)
j=1 2i=1 j=1
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000000000 (Dual form)

Proposition: Given a linearly separable training sample

S = ((wla y1), ) (mfa yﬁ))

and suppose the parameters a* solve the following quadratic opti-
mization problem:

l 1 ¢
maximize W(a) =Y «a; — 5 > iy (T, )
=1 ij=1
14
subject to > y;a; = 0,
i=1
o, >0 for 1=1,...,¢

¢

1=

Then the weight vector w = ¥
gin hyperplane with geometric margin v = 1/||w*||.

1 Yicr x; realizes the maximal mar-

e Remark 1: The value of b

— _% (%Q@%((w*, x;)) + 2;1311“10*7 €U¢>))
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e Remark 2: Karush-Kuhn-Tucker conditions state that the
optimal solutions a*, (w*, b*) must satisfy

af[yi((w*, @) +0) — 1] =0

Only for inputs @; for which the functional margin is one (and
therefore lie closest to the hyperplane), the corresponding af
are non-zero. All the other parameters o are zero.

e Remark 3: The optimal hyperplane can be expressed in
terms of support vectors
0
flx,a®,b") = ¥y (xj, ®) + b° = Yy (@, @) + b
i=1 iesv

Points that are not support vectors have no influ-
ence.

e Remark 4: Another important consequence of the Karush-
Kuhn-Tucker complementarity condition is that for 5 € sv,
Y

and therefore
0

(w*, w*) = ,Zlyzyj@f}k@; (zi, ;)

1,)=

= ¥ ajy; ¥ yioy (xi, xj)
jESV iESV

= > a;(l—y;b")
JESV

= > q; (2)
1ESV

l.e.

1/2
3 =1/lw = £ o)

1€ESV
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