収束定理

ullet Theorem: (Novikoff) Let S be a non-trivial training set, and let

$$R = \max_{1 \le i\ell} \|\boldsymbol{x}_i\|.$$

Suppose that there exists a vector \mathbf{w}_{opt} such that $\|\mathbf{w}_{opt}\| = 1$ and

$$y_i(\langle \boldsymbol{w}_{opt}, \boldsymbol{x}_i \rangle + b_{opt}) \ge \gamma$$

for $1 \leq i\ell$. Then the number of mistakes made by the on-line perceptron algorithm on S is at most

$$\left(\frac{2R}{\gamma}\right)^2$$
.

- 間違いの回数に上限 ⇒ 有限回の繰り返しで収束
- 線形識別可能性を仮定
- 線形識別可能でなければ修正を繰り返し収束しない
- 線形識別可能性の判断には使えない
- 途中で打ち切った場合,そのときの重みが最適かどうかわからない

証明

Define $\hat{\boldsymbol{x}}_i = (\boldsymbol{x}_i^T, R)^T$, $\hat{\boldsymbol{w}} = (\boldsymbol{w}^T, b/R)^T$. Let $\hat{\boldsymbol{w}}_{t-1}$ be the augmented weight vector prior to the tth mistake. The tth update is performed when

$$y_i \langle \hat{\boldsymbol{w}}_{t-1}, \hat{\boldsymbol{x}}_i \rangle = y_i (\langle \boldsymbol{w}_{t-1}, \boldsymbol{x}_i \rangle + b_{t-1}) \le 0$$

where (\boldsymbol{x}_i, y_i) is the point incorrectly classified by $\hat{\boldsymbol{w}}_{t-1}$. The update is the following:

$$\hat{\boldsymbol{w}}_t = \begin{bmatrix} \boldsymbol{w}_t \\ b_t/R \end{bmatrix} = \begin{bmatrix} \boldsymbol{w}_{t-1} \\ b_{t-1}/R \end{bmatrix} + \eta y_i \begin{bmatrix} \boldsymbol{x}_i \\ R \end{bmatrix} = \hat{\boldsymbol{w}}_{t-1} + \eta y_i \hat{\boldsymbol{x}}_i$$

where $b_t = b_{t-1} + \eta y_i R^2$. Since the margin is γ , we have

$$\langle \hat{\boldsymbol{w}}_t, \hat{\boldsymbol{w}}_{opt} \rangle = \langle \hat{\boldsymbol{w}}_{t-1}, \hat{\boldsymbol{w}}_{opt} \rangle + \eta y_i \langle \hat{\boldsymbol{x}}_i, \hat{\boldsymbol{w}}_{opt} \rangle \ge \langle \hat{\boldsymbol{w}}_{i-1}, \hat{\boldsymbol{w}}_{opt} \rangle + \eta \gamma$$

and this implies that

$$\langle \hat{\boldsymbol{w}}_t, \hat{\boldsymbol{w}}_{opt} \rangle \geq t \eta \gamma$$

Similarly, we have

$$\|\hat{\boldsymbol{w}}_{t}\|^{2} = \|\hat{\boldsymbol{w}}_{t-1}\|^{2} + 2\eta y_{i} \langle \hat{\boldsymbol{w}}_{t-1}, \hat{\boldsymbol{x}}_{i} \rangle + \eta^{2} \|\hat{\boldsymbol{x}}_{i}\|^{2}$$

$$\geq \|\hat{\boldsymbol{w}}_{t-1}\|^{2} + \eta^{2} \|\hat{\boldsymbol{x}}_{i}\|^{2} = \|\hat{\boldsymbol{w}}_{t-1}\|^{2} + \eta^{2} (\|\boldsymbol{x}_{i}\|^{2} + R^{2}),$$

which implies $\|\hat{\boldsymbol{w}}_t\|^2 \geq \|\hat{\boldsymbol{w}}_{t-1}\|^2 + \eta^2 R^2$. Thus we have

$$\|\hat{\boldsymbol{w}}_t\|^2 \ge 2t\eta^2 R^2.$$

The two inequalities combined give the 'squeezing' relations

$$\|\boldsymbol{w}_{opt}\|\sqrt{2t\eta}R \geq \|\boldsymbol{w}_{opt}\|\|\boldsymbol{w}_{t}\| \geq \langle \hat{\boldsymbol{w}}_{t}, \hat{\boldsymbol{w}}_{opt} \rangle \geq t\eta\gamma,$$

which together imply the bound (note $\|\hat{\boldsymbol{w}}_{opt}\|^2 \le \|\boldsymbol{w}_{opt}\|^2 + 1 = 2$)

$$t \le 2 \left(\frac{R}{\gamma}\right)^2 \|\hat{\boldsymbol{w}}_{opt}\|^2 \le \left(\frac{2R}{\gamma}\right)^2.$$

最適化問題

• Formulation: (Optimization problem) Given functions f, g_i , i = 1, ..., k, and h_i , i = 1, ..., m, defined on a domain $\Omega \subseteq \mathbb{R}^n$, optimization problem is formalized as follows:

minimize
$$f(\boldsymbol{w}), \quad \boldsymbol{w} \in \Omega$$

subject to $g_i(\boldsymbol{w}) \leq 0, \quad i = 1, \dots, k$
 $h_i(\boldsymbol{w}) = 0, \quad i = 1, \dots, m$

where f is called the *objective function*, and the remaining relations are called, respectively, the *inequality* and *equality* constraints.

• **Definition**: (Convexity) A real-valued function $f(\boldsymbol{w})$ is called convex for $\boldsymbol{w} \in R^n$ if, $\forall \boldsymbol{w}, \boldsymbol{u} \in R^n$, and for any $\theta \in (0, 1)$,

$$f(\theta \boldsymbol{w} + (1 - \theta)\boldsymbol{u}) \le \theta f(\boldsymbol{w}) + (1 - \theta)f(\boldsymbol{u})$$

• **Theorem**: (Fermat) A necessary condition for \boldsymbol{w}^* to be a minimum of a function $f(\boldsymbol{w})$ is

$$\frac{\partial f(\boldsymbol{w}^*)}{\partial \boldsymbol{w}} = \mathbf{0}.$$

This condition, together with convexity of f, is also sufficient.

Lagrange 法

• **Definition**: (Lagrangian) Given an optimization problem with objective function $f(\mathbf{w})$, and equality constraints $h_i(\mathbf{w}) = 0$, i = 1, ..., m, we define the *Lagrangian function* as

$$L(\boldsymbol{w}, \boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{i=1}^{m} \beta_i h_i(\boldsymbol{w})$$

where the coefficients β_i are called the *Lagrange multipliers*.

• **Theorem**: (Lagrange) A necessary condition for a point \boldsymbol{w}^* to be a minimum of $f(\boldsymbol{w})$ subject to $h_i(\boldsymbol{w}) = 0, i = 1, \ldots, m$, is

$$\frac{\partial L(\boldsymbol{w}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{w}} = \boldsymbol{0}$$
$$\frac{\partial L(\boldsymbol{w}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = \boldsymbol{0}$$

for some values $\boldsymbol{\beta}^*$. The above conditions are also sufficient provided that $L(\boldsymbol{w}, \boldsymbol{\beta}^*)$ is a convex function of \boldsymbol{w} .

Kuhn-Tucker 法

• **Definition**: (generalized Lagrangian) Given an optimization problem with domain $\Omega \subseteq \mathbb{R}^n$,

minimize
$$f(\boldsymbol{w}), \quad \boldsymbol{w} \in \Omega$$

subject to $g_i(\boldsymbol{w}) \leq 0, \quad i = 1, \dots, k$
 $h_i(\boldsymbol{w}) = 0, \quad i = 1, \dots, m$

we define the generalized Lagrangian function as

$$L(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\boldsymbol{w}) + \sum_{i=1}^{k} \alpha_i g_i(\boldsymbol{w}) + \sum_{i=1}^{m} \beta_i h_i(\boldsymbol{w})$$
$$= f(\boldsymbol{w}) + \boldsymbol{\alpha}^T \boldsymbol{g}(\boldsymbol{w}) + \boldsymbol{\beta}^T \boldsymbol{h}(\boldsymbol{w})$$

• **Theorem**: (Kuhn-Tucker) Sufficient conditions for a point \boldsymbol{w}^* to be an optimum are the existence of $\boldsymbol{\alpha}^*, \boldsymbol{\beta}^*$ such that

$$\frac{\partial L(\boldsymbol{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{w}} = \boldsymbol{0},
\frac{\partial L(\boldsymbol{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)}{\partial \boldsymbol{\beta}} = \boldsymbol{0},
\alpha_i^* g_i(\boldsymbol{w}^*) = 0, \quad i = 1, \dots, k,
g_i(\boldsymbol{w}^*) \leq 0, \quad i = 1, \dots, k,
\alpha_i^* \geq 0, \quad i = 1, \dots, k.$$

● 例題 1

maximize
$$x + y$$

subject to $x^2 + y^2 \le 1$, $x \ge 0$, $y \ge 0$

例題 2

maximize
$$(x-1)^2 + (y-1)^2$$

subject to $x + 2y \le 1$, $x \ge 0$, $y \ge 0$

Kuhn-Tucker 法(例題)

● 解答 1:

$$f(\mathbf{x}) = -x - y$$

$$g_1(\mathbf{x}) = x^2 + y^2 - 1$$

$$g_2(\mathbf{x}) = -x$$

$$g_3(\mathbf{x}) = -y$$

とおく.また $D = \frac{\partial}{\partial x}$ と書くことにすると,

$$Df(\mathbf{x}) = (-1, -1)$$

 $Dg_1(\mathbf{x}) = (2x, 2y)$
 $Dg_2(\mathbf{x}) = (-1, 0)$
 $Dg_3(\mathbf{x}) = (0, -1)$

となる.したがって最適解は

$$0 = (-1, -1) + \alpha_1(2x, 2y) + \alpha_2(-1, 0) + \alpha_3(0, -1)$$

$$0 = \alpha_1(x^2 + y^2 - 1)$$

$$0 = \alpha_2(-x)$$

$$0 = \alpha_3(-y)$$

$$\alpha_i \ge 0$$

をみたす.

- $1. \ x>0, y>0$ のとき $. \ \alpha_2=\alpha_3=0$ であるから $2\alpha_1x=2\alpha_1y=1$. これを第2式に代入し , $\alpha_1>0$ を考慮すると $\alpha_1=1/\sqrt{2}, x=1/\sqrt{2}, y=1/\sqrt{2}$ を得る .
- 2. x = 0のとき,第1式より $\alpha_2 = -1$ となり不適.
- $3. \ y=0$ のとき,第1式より $\alpha_3=-1$ となり不適.

したがって, 求める解は $(x,y)=(1/\sqrt{2},1/\sqrt{2})$.

● 解答 2: 省略.求める解は(x,y) = (0,0).

マージン

 Functional margin: $\gamma = y(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b)$

- Scale \boldsymbol{w} and b so that: $y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \geq 1 \quad \forall i$
- Support vectors: $\boldsymbol{x}^+, \boldsymbol{x}^-$

$$\langle \boldsymbol{w}, \boldsymbol{x}^+ \rangle + b = 1, \quad \langle \boldsymbol{w}, \boldsymbol{x}^- \rangle + b = -1$$

• Geometric margin: d

$$d = \frac{1}{2} \left(\left\langle \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}, \boldsymbol{x}^{+} \right\rangle \right) - \left(\left\langle \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}, \boldsymbol{x}^{-} \right\rangle \right)$$
$$= \frac{1}{2\|\boldsymbol{w}\|} \left(\left\langle \boldsymbol{w}, \boldsymbol{x}^{+} \right\rangle \right) - \left(\left\langle \boldsymbol{w}, \boldsymbol{x}^{-} \right\rangle \right) = \frac{1}{\|\boldsymbol{w}\|}$$

最大マージン識別器 (Primal form)

Proposition: Given a linearly separable training sample

$$S = ((\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{\ell}, y_{\ell}))$$

the hyperplane (\boldsymbol{w}, b) that solves the optimization problem

minimize
$$\boldsymbol{w}_{,b} \ \langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

subject to $y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle + b) \geq 1$, for $i = 1, \dots, \ell$

realizes the maximal margin hyperplane with geometric margin $\gamma = 1/\|\boldsymbol{w}\|$.

• Lagrangian

$$L(\boldsymbol{w}, b, \alpha) = \frac{1}{2} \langle \boldsymbol{w}, \boldsymbol{w} \rangle - \sum_{i=1}^{\ell} \alpha_i [y_i(\langle \boldsymbol{w}_i, \boldsymbol{x}_i \rangle + b) - 1]$$

where $\alpha_i \geq 0$ are Lagrange multipliers. Imposing stationarity condition, we have

$$\frac{\partial L(\boldsymbol{w}, b, \alpha)}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^{\ell} y_i \alpha_i \boldsymbol{x}_i = \boldsymbol{0},
\frac{\partial L(\boldsymbol{w}, b, \alpha)}{\partial b} = \sum_{i=1}^{\ell} y_i \alpha_i = 0.$$
(1)

Substituting these into the primal to obtain

$$L(\boldsymbol{w}, b, \alpha) = \sum_{j=1}^{\ell} \alpha_i - \frac{1}{2} \sum_{i=1}^{\ell} y_i \alpha_i \sum_{j=1}^{\ell} y_j \alpha_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$

最大マージン識別器 (Dual form)

Proposition: Given a linearly separable training sample

$$S = ((\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_{\ell}, y_{\ell}))$$

and suppose the parameters α^* solve the following quadratic optimization problem:

maximize
$$W(\boldsymbol{\alpha}) = \sum_{j=1}^{\ell} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{\ell} y_i y_j \alpha_i \alpha_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$

subject to $\sum_{i=1}^{\ell} y_i \alpha_i = 0$, $\alpha_i \geq 0$ for $i = 1, \dots, \ell$

Then the weight vector $\boldsymbol{w} = \sum_{i=1}^{\ell} y_i \alpha_i^* \boldsymbol{x}_i$ realizes the maximal margin hyperplane with geometric margin $\gamma = 1/\|\boldsymbol{w}^*\|$.

• Remark 1: The value of b

$$b^* = -\frac{1}{2} \left(\max_{y_i = -1} (\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle) + \min_{y_i = 1} (\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle) \right)$$

サポートベクタの性質

• Remark 2: Karush-Kuhn-Tucker conditions state that the optimal solutions α^* , (w^*, b^*) must satisfy

$$\alpha_i^*[y_i(\langle \boldsymbol{w}^*, \boldsymbol{x}_i \rangle + b^*) - 1] = 0$$

Only for inputs \boldsymbol{x}_i for which the functional margin is one (and therefore lie closest to the hyperplane), the corresponding α_i^* are non-zero. All the other parameters α_i^* are zero.

• Remark 3: The optimal hyperplane can be expressed in terms of support vectors

$$f(\boldsymbol{x}, \boldsymbol{lpha}^*, b^*) = \sum_{i=1}^{\ell} y_i \alpha_i \langle \boldsymbol{x}_i, \boldsymbol{x} \rangle + b^* = \sum_{i \in \mathrm{SV}} y_i \alpha_i \langle \boldsymbol{x}_i, \boldsymbol{x} \rangle + b^*$$

Points that are not support vectors have no influence.

• Remark 4: Another important consequence of the Karush-Kuhn-Tucker complementarity condition is that for $j \in sv$,

$$y_j f(\boldsymbol{x}_j, \boldsymbol{\alpha}^*, b^*) = y_j \left(\sum_{i \in SV} y_i \alpha_i \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + b^* \right) = 1,$$

and therefore

$$\langle \boldsymbol{w}^*, \boldsymbol{w}^* \rangle = \sum_{i,j=1}^{\ell} y_i y_j \alpha_i^* \alpha_j^* \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$

$$= \sum_{j \in SV} \alpha_j^* y_j \sum_{i \in SV} y_i \alpha_i^* \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle$$

$$= \sum_{j \in SV} \alpha_j^* (1 - y_j b^*)$$

$$= \sum_{i \in SV} \alpha_i^*$$
(2)

i.e.,

$$\gamma = 1/\|\boldsymbol{w}^*\| = \left(\sum_{i \in \mathrm{SV}} \alpha_i^*\right)^{1/2}$$