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Abstract— We propose a dynamics model of galvanotaxis
(locomotor response to electrical stimulus) of the protozoan
Paramecium. Our purpose is to utilize microorganisms as micro-
robots by using galvanotaxis. For precise and advanced actuation,
it is necessary to describe the dynamics of galvanotaxis in a
mathematical and quantitative manner in the framework of
robotics. However, until now the explanation of Paramecium
galvanotaxis in previous works has remained only qualitative.
In this paper, we construct a novel model of galvanotaxis as
a minimal step to utilizing Paramecium cells as micro-robots.
Numerical experiments for our model demonstrate realistic
behaviors, such as U-turn motions, like those of real cells.

Index Terms—Paramecium, galvanotaxis, dynamics, model,
microrobot

I. INTRODUCTION

Today, there is great interest in measurement and control at
the micrometer and nanometer scale. Conventional methods,
however, have required human operators with high dexterity,
expertise, and long experience. Hence, automation technolo-
gies to assist operators are needed. Yet, there remain many
problems to be solved before its practical application becomes
realistic; these problems are mainly due to the still relatively
young and undeveloped nature of the field and the limited
technology available.

Our approach to overcome these problems is to utilize
naturally occurring micromachines, or microorganisms. For
all living things, detection of changes in the environment
and quick reaction are essential for their survival. There-
fore, microorganisms have acquired sophisticated sensors and
actuators through the course of their evolution. If we can
develop techniques to control them freely, we can realize
multi-purpose, programmable microrobotic systems superior
to existing micromachine systems. Our goal is to eventually in-
tegrate controlled microorganisms and information processing
systems [1]. By controlling microorganisms, we aim to achieve
various applications, such as cell manipulation, microscopic
delivery, smart microsensors, and assembly of micro-electro
mechanical systems (MEMS).

To develop microrobotic applications of microorganisms,
actuation of cells is a key technology to be realized first.
One effective candidate for actuation would be to utilize

galvanotaxis, an intrinsic locomotor response to an electrical
stimulus, because of its non-invasive and non-contact nature.
Using galvanotaxis, some recent studies have achieved simple
motion control of Paramecium caudatum, a kind of protozoa
with strong galvanotaxis [1–3]. However, these studies were
based on simple empirical rules without knowledge about the
physical properties of the cells, and thus had limited control
performance. For instance, when a stimulus was toggled to
turn a cell, there was a considerable time lag of several
hundred milliseconds between the start of the stimulus and
completion of the turn, causing the cell to turn too far [1],
[3].

To realize more precise control, it is essential to deal with
Paramecium in the framework of standard robotics, that is,
to discuss its dynamics, trajectory planning, advanced motion
control and so on. The minimal and most basic preparation
required for this discussion is a mathematical and quantitative
model of the physical dynamics of Paramecium.

Unfortunately, there seem to be no studies on modeling
of Paramecium galvanotaxis from such a robotic point of
view. Conventional Paramecium models have mainly been
physiological and biochemical ones that have focused on
its membrane potential or signal transduction, ignoring its
physical properties. A very rare physical model proposed by
Naitoh et al. considered only the behavior with no electri-
cal stimulus [4]. Although Sakane et al. and Hirano et al.
constructed models for chemotaxis and the response called
avoiding reaction [5], [6], they are not applicable to gal-
vanotaxis, which has a fundamentally different mechanism
from other taxis or reactions. Fearing and Itoh independently
performed pioneering experiments on controlling protozoa, but
their approach was based on empirical rules [2], [3].

Conventional biology has provided only qualitative explana-
tions for galvanotaxis at the physical level [7], [8]. However,
practical application of galvanotaxis requires its quantitative
evaluation. Robotic treatment of cells will not become feasible
without a mathematical description of single cell motion.

As a minimal preparation for a microrobotic approach to
Paramecium control, this paper describes a dynamics model
of Paramecium galvanotaxis.
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Fig. 1. Qualitative explanation for galvanotaxis.

II. MODEL OF GALVANOTAXIS

A. Paramecium and Its Galvanotaxis

1) What is Galvanotaxis?: Paramecium caudatum is a kind
of unicellular protozoa with an ellipsoidal shape, inhabiting
freshwater. It swims by waving cilia on its body; thousands
of cilia beat the water backward and yield a forward reaction
force [4]. The ciliary motion is controlled by shifts in the
membrane potential and the accompanying changes in ion
concentration in the cell.

When an external electrical stimulus is applied, it modifies
the membrane potential and alters the ciliary movements,
consequently exerting an influence on the cell motion. In
a macroscopic view, the cell is forced to swim toward the
cathode. This phenomenon is called negative galvanotaxis. The
term taxis indicates an intrinsic locomotor response toward or
away from an external stimulus. Note that galvanotaxis is just a
byproduct of the electrophysiological nature of the cell, unlike
chemotaxis and phototaxis, which give the cell advantages for
its survival.

2) Mechanism of Paramecium Galvanotaxis: A parame-
cium cell in an electric field shows characteristic ciliary move-
ment. Assume an imaginary plane that is perpendicular to the
electric field and located near the center of the cell somewhat
close to the cathodal end, dividing the cell into two parts, as
illustrated in Fig. 1. By applying the electric field, cilia on
the anodal end begin to beat more frequently (ciliary aug-
mentation), and beating on the cathodal end becomes reversed
and more frequent (ciliary reversal). This is called the Ludloff
phenomenon [9], and it provides a qualitative explanation for
galvanotaxis: the asymmetry in direction of the ciliary beatings
on the hatched region shown in Fig. 1 generates a rotational
force and orients the cell toward the cathode (ciliary motions
away from this region are symmetrical and do not contribute
to the rotation).

The cause of galvanotaxis can be understood to be a
combination of electrochemical, physiological and physical
factors. While electrochemical and physiological factors are
not so dominant for control performance, physical factors play
an important role in control of cells. Therefore, this paper con-
centrates on physical factors, while regarding electrochemical
and physiological ones as black boxes.

(1) Forward
Propulsion

(2) Rotation around
its Longitudinal Axis

(3) Rotation around
its Dorsoventral Axis 

Cytostome

Anterior

Fig. 2. Schematic representation of forces produced by movements of cilia.
Reproduced from reference [4] with modification.

B. Assumptions

1) Simplification of Cell Motion: Strictly speaking, the
motion of a Paramecium cell is composed of (1) forward
propulsion, (2) a rotation around its longitudinal axis, and (3)
a rotation around its dorsoventral axis due to its asymmetrical
shape. Consequently, the cell swims forward spinning along
a spiral [4]. The most dominant element in galvanotaxis is
element (1). For simplicity, we will not discuss the other
two elements, which are not essential for galvanotaxis. This
assumption means that the cell just goes straight when there
is no electric field.

By disregarding the rotation components, we can describe
the cell motion in a two-dimensional plane including the cell
axis and the electric field vector. Hereafter we consider cell
motion only in this plane. At the same time, because motions
of the cilia can be assumed to be symmetric with respect to the
plane, the movements of the cilia on the plane can sufficiently
represent the movements of all cilia. Thus, we consider the
cell as a two-dimensional ellipsoid on the plane.

2) Assumptions on Ciliary Motion: We assume that cilia
are distributed uniformly on the edge of the ellipsoid with
linear density n. For simplicity, we consider only two states
for beating, reverse and normal. The cilia are oriented towards
the anterior side in reverse beating, and towards the posterior
side in normal beating. In the presence of an electric field,
imagine a plane perpendicular to the field (hereinafter referred
to as “a boundary plane”). This plane divides the cell into
two regions; cilia are considered to be normal in the anodal
side, and reversed in the cathodal side. The boundary plane is
formed in the cathodal side, and the shortest distance between
the plane and the center of the cell is l.

The beating frequency is assumed to be uniform over the
whole cell, with a value ϕ0 in the absence of an electric field
(hereinafter referred to as “regular state”). When an electric
field E is applied, the frequency increases to ϕ = (1+βE)ϕ0

(β > 0). Let f0 be a propulsion force yielded by one cilium in
the regular state, the force being proportional to the frequency
ϕ0 (f0 = αϕ0). Let f = αϕ = (1 + βE)f0 be the force in
the presence of the electric field.

3) Coordinate Systems: We define two coordinate systems,
a global one (X,Y ) and a local one (x, y), on the plane, as
shown in Fig. 3. The global coordinate system is allocentric,
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that is, fixed with respect to the external world, with the X-
axis parallel to E. The local coordinate system (introduced
to simplify the description) is egocentric, that is, fixed with
respect to the cell, with the X-axis parallel to the longitudinal
axis of the cell. Let φ be the angle of the cell axis in the
global coordinate system (φ < 0 in Fig. 3, for the sake of
convenience in deriving the model).

Let the cell shape be an ellipsoid with a major axis 2L and
a minor axis 2R (L > R). In the local coordinate system, the
cell is represented as an ellipsoid E :

E :
x2

L2
+

y2

R2
= 1. (1)

C. Model of the Torque

The phenomenon whereby a Paramecium cell swims toward
the cathode is due to a torque caused by assymmetry of ciliary
motion. In this section, we estimate this torque. First, consider
an ellipsoid E , as illustrated in Fig. 4.

For convenience, let us introduce θ = −φ, as the angle
of the electric field in the local coordinate system. Then the
boundary plane is expressed as a line L:

L : y = − 1
tan θ

x +
l

sin θ
. (2)

As mentioned in the former section, assymmetry of ciliary
beating exists only at the substantially trapezoidal region
formed by the intersection of the boundary plane and the
ellipsoid (shown as hatched regions in Fig. 1 and Fig. 4). The

forces excerted by cilia outside this region are symmetrical
and do not contribute to rotation. Thus, we consider only the
forces generated at this trapezoidal region.

The x positions of two lines that consist of the “upper” side
and “lower” side of the trapezoid are equal to those of two
intersecting points of E and L. These two positions, x− and
x+, are obtained as two roots of equation

(R2 sin2 θ + L2 cos2 θ)x2 − 2lL2 cos θ · x
+ l2L2 − R2L2 sin2 θ = 0, (3)

which is derived by eliminating y from Eq. (1) and Eq. (2)
(this equation always has two real roots). Between these two
intersecting points of E and L, let x+ be a point with larger
y position, and x− be a point with smaller y position.

Because it would be too complicated to consider all mi-
nuscule forces generated by each cilium, here we focus on
the resultant forces for simplicity. We set the sites of action,
P1(xa, ya) and P2(xa,−ya) (ya ≥ 0), on the midpoints of
the “height” of the trapezoid, and assume the directions of
the forces to be tangential to the ellipsoid. Let us define the
disposition vectors, r1 =

−−→
OP1 and r2 =

−−→
OP2.

Then we obtain

xa =
x− + x+

2
=

lL2 cos θ

R2 sin2 θ + L2 cos2 θ
. (4)

Also, ya is obtained by substituting Eq. (4) into Eq. (1):

ya =
R

L

√
L2 − x2

a .

The two tangential lines on the sites of action (xa,±ya) are
given by

xa

L2
x ± ya

R2
y = 1,

from which we get the inclinations of the two tangential lines,

m = ∓R2xa

L2ya
,

and we get normalized tangent vectors(
1√

1 + m2
,

m√
1 + m2

)
.

Let m1 be the tangent vector at P1, and m2 be that at P2.
Then unit force vectors, e1 at P1 and e2 at P2, are:

e1 = −m1 (reverse beating),

e2 = m2 (normal beating),

considering the directions of ciliary beatings.
Moreover, let us suppose that the magnitude of the resultant

force is proportional to the number of cilia n, and that n is
proportional to the “height” of the trapezoid:

w = x− − x+,

which is a signed value whose sign is the same as θ. Then
the propelling forces F 1 and F 2 at the points P1 and P2

respectively, are written as

F 1 = fwne1, F 2 = fwne2.
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By assuming that the center of gravity of the cell is located
at the center of the ellipsoid, we find the torques at the points
P1 and P2:

τ 1 = r1 × F 1, τ 2 = r2 × F 2,

where one should note that these vectors are treated as three
dimensional in calculating cross products.

Finally the torque rotating the cell body is given by:

τ = τ 1 + τ 2.

Since its x and y components are obviously zero, hereafter we
call its z component, τz , the “torque”.

Finally, by substituting φ = −θ, the torque is described in
the global coordinate system as:

τz(φ)

= − 4LR2fns
√

L2c2 + R2s2 − l2√
L4c4 + 2L2R2c2s2 + R4s4 − L2l2c2 + R2l2c2

, (5)

where s = sinφ, c = cos φ.

This equation provides the torque generated in the Paramecium
cell with the angle φ.

D. Dynamic Equation of Paramecium Cell

Using the torque estimated in previous section, we now
discuss the motion equation of a Paramecium cell.

1) Dynamic Equation for Translational Motion: In the
micrometer-scale world the Paramecium cells inhabit, the
inertial resistance of the fluid is small enough to be negligible,
and the viscous resistance becomes dominant instead. Hence
we can apply Stokes’ law, derived from the Navier-Stokes
equation by ignoring inertial force.

Since the rigorous evaluation of viscous resistance around
an ellipsoid is quite complicated, here we approximate the
viscosity roughly by applying the formula for a sphere as a
substitute. According to Stokes’ law, the force exerted on a
sphere with radius a, moving with velocity v in a viscous
fluid is given by

Fs = 6πµav, (6)

where µ is the viscosity of the fluid. From this equation, the
viscous force around the ellipsoidal cell can be obtained by
replacing the radius a by the cell radius R. Thus the motion
equation for the translational motion of the cell can be roughly
approximated by:

MẌ + DẊ = F , (7)

where X = (X,Y )t is the cell position, F = 2fn|xa|eX is a
forward propulsive force, eX = X

|X| = (cos φ, sin φ)t is a unit
vector along the body axis, D = 6πµR is the viscous friction
coefficient, M = ρV is the cell mass, ρ is the cell density,
and V = 4πLR2/3 is the cell volume.

2) Dynamic Equation for Rotational Motion: We now
derive a motion equation for rotational motion. As mentioned
above, because evaluation of the viscosity around the ellipsoid
is complicated, we again substitute Stokes’ law for a sphere.
A viscous resistance torque against the rotation can be ap-
proximated by assuming two mass points on the body axis
at a quarter of the length (L/2) from the origin, substituting
v = φ̇ · L/2 and a = L/2 into the Stokes’ law equation (6),
and multiplying both sides by L/2:

τs = Fs
L

2
= 6πµ

L

2
φ̇

L

2
L

2
=

3
2
πµL3φ̇.

This derivation would be too rough and the coefficient 3/2
might be unreliable; there could be a model error of several
fold. Let us introduce δ to replace the coefficient and absorb
the error. Thus, the motion equation for rotational motion is
given by

Iφ̈ + D′φ̇ = τ(φ), (8)

where I = πM(R2 + L2)/5 is the moment of inertia for an
ellipsoid, and D′ = δπµL3 is the viscous friction coefficient.

3) Integration of Motion Equations: Integration of the
motion equations for translational motion (7) and rotational
motion (8) leads to the following equations:

ẏ = Ay + B(y), (9)

A =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 −D/M 0 0 0
0 0 0 −D/M 0 0
0 0 0 0 0 1
0 0 0 0 0 −D′/I




,

B(y) =
(

0, 0,
P

M
cos φ,

P

M
sinφ, 0,

τz(φ)
I

)t

,

and where P = 2fn|xa| and y = (X,Y, Ẋ, Ẏ , φ, φ̇)t.

III. NUMERICAL EXPERIMENTS AND COMPARISON TO

ACTUAL DATA

We performed some numerical experiments to verify the
motion equation (9) by using numerical analysis software
(MATLAB, MathWorks Inc.).

A. Preparation of Parameters

Table I shows several physical parameters used in the
experiments. We obtained the cell size by observing cells
incubated in our laboratory; the size we observed was smaller
than the average [8]. The boundary plane offset l is estimated
from several figures shown in previous studies [8], [10], for
it is difficult to observe with our equipment. As for β, the
increase in beating frequency with electric field, the value was
estimated from the fact that the frequency almost doubled to
around 50 Hz under a stimulation of around a few volts per
centimeter, while that in the regular state was around 15-20
Hz [4].

1261



TABLE I

PARAMETERS OF THE PROPOSED MODEL.

Parameters Values Comments
Major cell axis 2L 100µm our strain
Minor cell axis 2R 25µm our strain
Boundary plane offset l 10µm Reference [8], [10]
Viscosity of water µ 1.00 × 10−3 kg/(ms) at 20 ◦C
Cell density ρ 1, 000 kg/m3 same as water
Increase in beating freq. β 2.00 × 10−3 V−1
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The force yielded by cilia on unit length, f0n, is still
an unknown parameter. We estimated the order of f0n by
using the actual value of swimming velocity measured in past
experiments.

The terminal velocity of a cell in the regular state was
obtained by substituting Ẍ = 0 into eq. (7) under conditions
E = 0 and φ = 0:

Ẋ = F /D =
|xa|φ=0eX

3πµR
f0n.

Since xa equals to l at E = 0, we can estimate f0n by:

f0n =
3πµR

l
|Ẋ|. (10)

According to our measurement of the cell velocity by using
a high-speed vision system [11], their velocity is around
400µm/s. Using this, we estimated f0n to be 4.71 × 10−6

N/m.

B. Torque Profile τz(φ)

The left side of Fig. 5 shows the torque τz(φ) as a function
of φ. The torque affects the cell so as to decrease φ, that is,
to make the cell turn toward the cathode.

C. Angular Stability in the Proposed Model

Equations (7) and (8) indicate that the motion equation of a
Paramecium cell has nonlinearity that might make the model
unstable. However, when the angle φ is sufficiently small, that
is, the direction of the cell is close to that of the electric field,
it is possible to make the model linear approximately. In this
section, we will linearize the model to observe the stability
for small φ.

In Fig. 5, the z component of the torque, τz(φ), exhibits a
gradual monotonic decrease near φ = 0, which implies that
it can be regarded as linear with respect to φ in this area.

Therefore, τz(φ) can be approximated using the inclination of
the tangential line at φ = 0:

τz(φ) � dτz

dφ

∣∣∣∣
φ=0

· φ = −4
R2Lfn

√
L2 − l2√

L4 − L2l2 + R2l2
φ.

Then eq. (8) becomes:

φ̈ = −D′

I
φ̇ +

Q

I
φ, where Q = −4

R2Lfn
√

L2 − l2√
L4 − L2l2 + R2l2

.

By defining a state variable ỹ = (φ, φ̇)t, the model of the cell
rotation becomes linear around the origin:

˙̃y = Ãỹ, Ã =
(

0 1
Q/I −D′/I

)
.

The eigenvalues of this matrix Ã are(
−D′ ±

√
D′2 − 4IQ

)
/2I , which are negative. Therefore,

the cell is stable for small φ and its direction converges to
φ = 0.

In addition, the global stability was verified qualitatively by
calculating a potential energy U for rotation. We defined U
as τz = −∂U

∂φ and computed it by numerical integration of
eq. (5) with respect to φ. The right side of Fig. 5 shows the
profile of U , indicating that the cell tends to approach φ = 0
for all φ.

D. Simulation and Comparison of U-turn Motions

We have accumulated a large amount of data for Parame-
cium motion using a high-speed vision system called I-CPV
(Fig. 6 A) [12] and a galvanotaxis continuous observation
system (Fig. 6 B) [13]. Using these data, we adjusted the
parameter δ to be 7.5, and verified the validity of the model.

When an electric field is applied in the direction opposite
to the swimming direction of a cell, the cell makes a U-turn
motion (Fig. 6 C). We tested whether our proposed model can
demonstrate this phenomenon.

First, swimming trajectories for cells with eleven different
initial orientations were calculated. Figure 6 D demonstrates
all trajectories simultaneously. The cells were configured to
all have the same initial position, namely, on the origin (0, 0),
but not their initial angles, which differed by intervals of
30◦(−150◦, −120◦, . . . , 150◦). A 5.0-V/cm electric field was
applied along the X-axis. The trajectory of each cell was
calculated using an ordinary differential equation solver. As
shown in Fig. 6 D, all cells starting from the origin turned
toward the cathode, like the real ones.

Next, we compared simulated and experimental positions as
shown in Fig. 7. We extracted positions along the electric field
(X direction), because X-position is almost independent of
fluctuations caused by spiral motions, which we disregarded.

Experimental data (thin lines) were obtained by high-speed
measurement of the responses of a single cell for several
levels of input electric field, using the galvanotaxis continuous
measurement system [13]. The electric field applied to the
cell had a step-like form, rising to 4.1 V/cm, and its position
and angle were continuously measured at a 1-kHz frame rate
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by high-speed tracking using the I-CPV system [11], [12]. In
Fig. 7, data for three seconds from the stimulus change in six
trials are overlaid. Simulated data (thick line) was calculated
under the conditions that the initial angle was the average of
angles obtained from previously measured data. The simulated
data was approximately in agreement with the experimental
results.

E. Responses for Various Inputs

We investigated how the cell response is influenced by the
changes in the control inputs (the magnitude and direction of
the electric field). This time, we focused on the time needed
for the U-turn motion (U-turn time), defined as the time from
the initial position to the moment it reached φ = 15◦. The
default values for the magnitude of the electric field and the
initial angle were set to 5 V/cm and 165 ◦, respectively.

The left plot in Fig. 8 shows the relation between the
magnitude of electric field and the U-turn time, and the right
plot shows that between the angle of electric field and the
U-turn time. As predicted, the U-turn time decreases as the
magnitude increases or the angle decreases.
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F. Toward the Application of Cell Control

Unlike robots, living things do not always exhibit uniform
behavior under the same conditions, and there exists quite
large differences among individuals. These facts would make
it quite difficult to realize model-based control using the
proposed model directly. Nevertheless, we believe that even
the estimation of U-turn time or trajectories allows more
precise and advanced control.

IV. SUMMARY

In this paper, we proposed a physical model of Paramecium
galvanotaxis as the first step for microrobotic application of
microorganisms, and investigated its behavior by numerical
calculations and experiments.
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