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Abstract
We focus on the growing need for a technology that can

achieve motion capture in outdoor environments. The con-
ventional approaches have relied mainly on fixed installed
cameras. With this approach, however, it is difficult to cap-
ture motion in everyday surroundings. This paper describes
a new method for motion estimation using a single wear-
able camera. We focused on walking motion. The key point
is how the system can estimate the original walking state
using limited information from a wearable sensor. This pa-
per describes three aspects: the configuration of the sensing
system, gait representation, and the gait estimation method.

1. Introduction
There is a growing need for ubiquitous sensing systems

that are capable of estimating the position and pose of hu-
mans. This type of sensing system is expected to contribute
greatly to the realization of applications in which human
body motion is captured and predicted in order to provide
cooperative assistance, for example, using image projection
systems, robots, and mobility systems, as illustrated in Fig-
ure 1. The key point in such ubiquitous motion capture is to
realize that the sensing should not be restricted by location.

Conventional motion capture systems have been de-
signed mainly to generate computer graphic animations. In
typical systems, multiple cameras installed at various posi-
tions around a subject (fixed cameras) observe optical mark-
ers mounted on the subject’s joints [10, 3, 2]. Recently, a
marker-less technique has been developed [9]. However,
multiple fixed cameras are required to observe a single per-
son at the same time without occlusions from the view-
point of each camera. This approach is considered to hinder
achievement of the goal described above.

A system configured of wearable sensors is a highly
promising approach. For example, Vlasic et al. developed
a novel motion capture system using accelerometers, gyro-
scopes, ultrasonic sources, and microphones [12]. However,
one disadvantage is that the user is required to attach many
sensors at the desired parts of the body. Also, because the
positions of the body parts are measured using ultrasound,
simultaneous usage of many such systems in crowded areas
is difficult.
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Figure 1. Human gait estimation using a wearable camera.

On the other hand, Hamaguchi et al. developed a wear-
able system for acquiring the walking state of a user [7].
In this system, the relative position from the user’s waist to
heel is measured by using an electromagnetic tracker. The
position of the user is updated by using this data when a but-
ton placed on the sole is pushed. However, the issue of the
complex configuration of multiple wearable sensors still re-
mains. Also there is a system which recognizes activity by
using a wearable accelerometers [5]. This system cannot
utilize landmarks in the environment, so that it is difficult to
avoid accumulated errors in the user’s position.

On the other hand, a wearable-sensor technique using
a single camera has been reported [4]. This is based on
a method called Simultaneous Localisation and Mapping
(SLAM), which estimates the camera motion and constructs
a map of the surrounding environment. The report shows
that the system can estimate its own location in an unknown
environment using a single camera. Although this is not
a technique for estimating the body pose of a human sub-
ject with a wearable camera, the framework is nevertheless
promising for our purpose.

The key point of our system is to estimate the local body
pose and the global position by using the minimum number
of wearable sensors. In this paper, we focus on the possi-
bility that the gait can be described as cyclic foot motions.
This allows us to assume that the obtained sensor data fol-
lows a behavior based on fixed models, so that it is feasible
to reconstruct the original state from the limited sensor data.

2. Motion estimation using a wearable camera
In this paper, we propose a system for motion estimation

of a human subject using only a single camera. Recently,
the size and the cost of sensors, including cameras, have
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been drastically reduced. Indeed, many mobile devices now
come with such sensors installed. Therefore, it is becom-
ing commonplace to assume that such sensors are available
anywhere and anytime.

Figure 1 shows the configuration of the proposed sys-
tem. The user mounts a camera on his leg, with the camera
pointing downward. The camera attached to the user’s body
captures changes in an image of the external environment
caused by the motion. We consider this setup sufficient to
estimate the gait. By utilizing the observed information in
conjunction with models of human motion, our technique
estimates both the current actual motion and the global po-
sition. Also, because the camera can observe the external
environment, it should be possible to reduce the accumu-
lated errors that occur in sensors such as accelerometers.

The direction of the camera is not an essential require-
ment. In the downward orientation, we intend to remove
moving objects, including other people, around the user to
simplify the image recognition. A setup where the camera
faces forward is also feasible, and in that case the amount
of information available for location detection is expected
to increase.

Under this configuration, the task involves the problem
of pose estimation using a single camera under a situation
where the motion is based on given models. The motion
model is not unique and varies with time according to spe-
cific rules. The whole body motion must also be estimated
from the camera pose.

3. Gait representation
The walking motion needs to be prepared in advance in

order to recognize which motion causes changes in the cap-
tured images. This section describes the gait representation.
In this paper, we assume that such advance knowledge of
the gait is constructed for each person.

The inverted pendulum model is a well-known simple
model of bipedal walking [6]. It is mainly used to create
walking patterns of robots. However, it is not effective to
complement insufficient sensor data because the inverted
pendulum model does not accurately describe human walk-
ing motion.

On the other hand, in the field of computer graphics, ani-
mations have been created mainly by using the motion data
directly obtained by motion capture systems. For example,
Unuma et al. used a Fourier expansion in order to interpo-
late or extrapolate human walking [11]. This kind of fre-
quency analysis is considered to be effective because most
walking motions can be characterized as cyclic motion. The
reported results show that the walking can be represented
using only low-frequency information with a small number
of parameters for animation. We also employed a motion-
data-based representation to take advantage of this feature.

The definitions of parameters are given here. In this pa-
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Figure 2. Parameter definitions.

per, the walking state is updated with the following equa-
tion:

µt =

⎡
⎢⎢⎢⎢⎣
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yt
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⎤
⎥⎥⎥⎥⎦ =
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⎤
⎥⎥⎥⎥⎦ (1)

Here, [xt, yt, zt] describes the waist position at time t, ṙt
is the speed in the traveling direction, and ξ̇t is the angu-
lar speed. The behaviors are parameterized based on cyclic
motion with phase ηt. Also, the collected data indicating the
relative positions of all joints, with the waist position set as
an origin, is pt = {pi

t|i = 1, . . . , Np}. Figure 2 illustrates
the parameter definitions.

There are three coordinate systems: those attached to the
world, the subject’s body, and the camera. The rigid trans-
formation between the world and the body is described by
using the walking state. Also, the camera is fixed to the
body, and the rigid transformation between the body and
the camera is assumed to be known in advance.

Based on this definition, as the gait data, the behaviors
of parameters dt = [zt, ṙt, ξ̇t,pt] are sampled in advance.
Walking samples are collected by using a motion capture
system. In this paper, we represent the cyclic motion by
using a Fourier expansion of up to fifth order. An example
in the case of the waist height is:

zt =
5∑

n=0

a0n sin(nηt + b0n). (2)

Using this representation, the behaviors are parameter-
ized by using (ain, b

i
n). Here, the superscript i is an in-

dex identifying each parameter. The sampled gait motion is
stored in the system as the feature vector f = {ain, bin|i =
1, . . . , Np + 3}.

4. Classification of the walking models
Human walking motion has some variations. This sec-

tion describes the method used to classify gaits. In this pa-
per, we call each classified motion a walking form. Also
we assume that the number of forms in steady walking is
finite. The system is assumed to have a sufficient number of
forms.

First, many walking samples are collected using a
motion-capture system. The samples are converted to vec-
tors fk by applying the frequency analysis described in



Section 3. This collected data fk=1,...,Ns
is compressed

to lower dimension and projected onto classification space.
The projected points are classified by using a clustering
method.

In this paper, principal component analysis is used to
project the sampled data onto three-dimensional space. The
following conversion is applied.

gk = U(fk − f̄) (3)

Here, U is the normalized orthogonal basis, f̄ is the
mean vector of all data, and gk is the compressed feature.
Also, we used the k-means clustering method for classifica-
tion [8].
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Figure 3. Transition diagram of walking forms.

Our method classifies the walking forms and generates
a transition diagram describing the connection relationships
between the walking forms. An example diagram is shown
in Figure 3. This diagram clarifies the time-sequential
changes of forms, which should make it possible to narrow
the search area to achieve robust estimation. This diagram
is generated based on observations made in collecting sam-
ples.

5. Human gait estimation
5.1. Overview

In the proposed method, the walking form and the
present state are estimated from the changes observed in
a wearable camera. The walking state for this estimation
is defined as µ̃t = [xt, yt, ξt, ηt, η̇t]. The complete state
µt defined in Section 3 can be reconstructed by using the
estimated state µ̃t and the form data fk.

Our method estimates the walking state at every sam-
pling of sensor data. An overview of the method is shown
in Figure 4. In this method, multiple candidate states are
generated. The total number of candidates at time t is Mt.
Each candidate is tested through five steps: selecting walk-
ing forms, state prediction, likelihood estimation, resam-
pling, and state updating. The state prediction and updating
are based on the extended Kalman filter (EKF). The details
of each step are described in the following subsections.

In this paper, we assume that the world coordinates of the
observed points in the environment are known. There is a
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Figure 4. Overview of the walking estimation technique.

possibility of removing this assumption by using the SLAM
framework. It should be possible to introduce this approach
in our method by extending the state in the EKF.

In addition, the intrinsic parameters of the camera used
are assumed to be known in advance. Therefore, if we ob-
tain the walking state, we can project the observed spatial
points onto the image plane.

5.2. Selection of walking forms
The i-th candidate state generated at time t − 1 is rep-

resented as µ̃i
t−1. The walking forms for the tests of this

state at time t are selected based on the state transition dia-
gram. For example, the candidate state µ̃i

t−1 is updated at
that time by using the walking data of the A-form shown
in Figure 3. In this case, this state is tested in the A-form
and the connected B- and C-forms, as defined in the state
transition diagram.

5.3. Prediction of walking state
In the selection step, the walking form at time t for the

candidate state µ̃i
t−1 is selected. State prediction is applied

using the walking feature of the selected form fk. The
equation of state is

µ̃i
t = g(µ̃i

t−1) + εt = µi
t + εt. (4)

Here, εt is process noise, and g is a nonlinear state pre-
diction function. In this step, we only calculate the vector
µi

t. In the function g, the parameters [xt, yt, ξt] in the state
µ̃i

t are predicted based on equation (1). The phase parame-
ters are predicted by the following equation:[

ηt
η̇t

]
=

[
ηt−1 + η̇t−1

η̇t−1

]
. (5)

5.4. Likelihood estimation and resampling
The likelihood of the i-th candidate state ωi

t is estimated
using the likelihood at the previous time t− 1 based on the
following equation:

ωi
t = Cλi

tω
i
t−1. (6)

In this update, if the candidate is predicted based on the
same walking form at the previous time, a higher value is



given to the likelihood as an advantage. This operation is
controlled by the parameter C. If the forms between two
successive estimations are the same, C is set to be larger
than one; otherwise C is set to one.

The parameter λi
t is the reliability of the prediction tested

by the sensing data. Using the predicted state, the spatial
points based on world coordinates can be projected onto the
image plane of the camera. Using the sum of the errors be-
tween the projected points and the observed corresponding
points, we define the reliability λi

t as

λi
t =

1√
2πσ

exp{−
(| ut − h(µi

t) | /Nt − ν
)2

2σ2
}. (7)

Here, ut is the Nt observed image points, and h(µt)
is the projected image points of the corresponding known
spatial points. As shown in the equation, the error is repre-
sented using a Gaussian distribution. In the experiment, we
set the average ν and the variance σ2 as 0 and 10, respec-
tively.

In the resampling step, the candidate states are filtered.
Our method leaves only the candidates whose likelihoods
are high. The state update described in the next section is
applied to those remaining candidates. For the sake of con-
venience, the numbering of the candidate states is initialized
after this operation.

5.5. State update
The prediction errors obtained in the previous step are

caused by the sensor errors and differences between the
stored walking form and the observed one. It remains pos-
sible that the observed form is slightly different from the
prepared one. The error is eliminated by the update opera-
tion using the captured sensor data. The observation model
is described by

ut = h(µ̃t) + δt. (8)

The update operation is based on the following equa-
tions, namely, the framework of the EKF technique:

Σt = GtΣt−1G
T
t + P t (9)

Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1 (10)

µ̃t = µt +Kt(ut − h(µt)). (11)

Here, Gt is the Jacobian of the state prediction g de-
scribed in Section 5.3, Ht is the Jacobian of the observa-
tion model h described in Section 5.4, and P t,Qt,

∑
t are

the covariance matrices of process noise, observation noise,
and the system.

In our method, the state prediction g is changed with the
transition of forms. Although this could cause a problem
in the EKF technique, from the experiments, we confirmed
that this is not a problem in the estimation because of the ro-
bustness in EKF as well as our design, where the transitions
of the forms at the possible phases are smooth.

6. Experiment
6.1. Simulation using sample walking data

In this experiment, we used the data in the motion cap-
ture library of the Carnegie Mellon University Graphics Lab
[1]. The data was for five gaits, including two types of “slow
walk”, two types of “walk”, and one type of “run”. All
walks were performed by the same person.

First, the five sets of data were converted to frequency
features f using the method described in Section 3. Next,
those features were classified using the method described
in Section 4. The classification result is shown in Figure 5.
The features were classified into three types. The points in
the same cluster are shown in the same color. The three clas-
sified types correspond to “slow walk”, “walk”, and “run”,
respectively. This means that the classified results matched
the initial classification decided visually based on the walk-
ing speed. The transition diagram is shown in Figure 5 by
a black line. In this experiment, the connection was sim-
ple. Transitions are allowed only between “slow walk” and
“walk”, and between “walk” and “run”. Also, the walking
data stored in the system is selected from those data. For
“walk” and “slow walk”, one of two data sets was used. For
“run”, the single data set was used directly.
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Figure 5. Classification result and transition diagram.

Figure 6. The input human gait and the estimated gait.

The generated walking motion was created by connect-
ing the three types of walking forms. In this experiment, the
order of form changes was “slow walk”, “walk”, and “run”.
For the “slow walk” and “walk” motions, the data that was
not selected in the advance setup described above was used.
The “run” motion was the same as the one that the system
stores. The sensor input was created by projecting the spa-
tial points onto the camera image plane based on the created
motion. The camera was assumed to be placed on the outer
side of the right thigh.
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Figure 7. Average errors in joint positions.

The estimation result is shown in Figure 6. The green
subject in the upper part of the figures shows the input mo-
tion. Also the blue subject in the bottom part of the figure
shows the estimated motion. The pairs of figures arranged
one above another show the poses at the same point in time.
Figure 7 shows the time variation of the average error in
the joint positions. The errors were within 10 cm, and so
the achieved accuracy is considered to be high. Although
in this experiment the actual motion and the stored motion
were different and the timings at which the forms change
were unknown, the form transition and the state update in
the estimation were not influenced by such problems, and
worked well to reconstruct the original walking motions.

6.2. Experiment using actual sensing data
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Figure 8. Photograph of the experimental environment.

This section describes an experiment using the actual
sensing data. A photograph of the experiment is shown in
Figure 8. In this experiment, the camera was placed on the
outer side of the right thigh. The camera used was a Basler
Pioneer. In this experiment, we used 400 × 400-pixel im-
ages captured at 250 fps. A chessboard pattern was set on
the ground so that we assumed that the world coordinates
of the observed points were known. Also, the observation
model described in Section 5.5 does not involve lens distor-
tion. Therefore, the images were used after applying distor-
tion correction.

First, the walking motions were sampled. The motion
capture system used for this sample collection was a Nat-
uralPoint OptiTrack. The sampled motions were classified
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Figure 9. Sample waveform of six different motions.
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Figure 10. The classified result using the actual sensor data.

after being converted to frequency features. As an exam-
ple, the waist height behaviors of six different motions are
shown in different colors in Figure 9. The classification re-
sult is shown in Figure 10. The motions were classified into
six forms: “walk”, “left-turning walk”, and “right-turning
walk” each at two different rates. Three samples were col-
lected for each motion. The motion of each group that was
closest to the center of each cluster was stored in the sys-
tem. Also, the defined transitions are shown in Figure 10 as
the black lines.

Based on this setup, the estimation was tested during
walking. In the estimation, the subject walked straight
ahead, turned left, and walked straight ahead again. Also,
he attempted to walk at slow speed. A Harris detector was
used to detect the feature points in the captured image. The
results of estimation are shown in Figure 11. In the fig-
ure, the photographs captured during this experiment and
the corresponding estimated poses are compared.

Also, Figure 12 shows the time variation of the aver-
age errors in the image plane between the observed image
points and the image points at which the corresponding spa-
tial points were projected based on the estimation results. A
sufficient number of feature points in the images could not
be detected, so that the errors became high. However, most
errors were under around 10 pixels. Also even when the fea-
ture points were not detected and the walking motion was
different from the stored motion, the estimation was stable.

Figure 13 shows the time variation of the estimated walk-
ing forms. In this experiment, if the subject achieved the
ideal motion, the observed walking could be represented us-
ing only three forms. However, in the figure, the forms var-
ied. This was because similar poses were included in neigh-
boring motions under a situation where the system captured



Figure 11. Estimation results of walking motion.
motions for a brief time. This is not a critical problem if
the estimated pose is unnatural. One way to improve the
estimation accuracy is to introduce a physical model of the
form change instead of representing it using the values ex-
pressed as equation (6).
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Figure 12. Time variation of errors evaluated by projecting the spa-
tial points onto the image plane based on the estimated pose.
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7. Conclusion
Ubiquitous motion capture technology will become in-

creasingly important in many applications. This paper pro-
poses a technique for estimating human gait with a simple
sensor configuration. In our method, advance knowledge of
the user’s motion allows use of only a single camera as the
wearable sensor.

This is a new approach to wearable sensors, with which

it is possible to estimate the body motion and the global
position using only the changes in images of the external
environment caused by the user’s motion. Another novel
aspect is the proposed representation of the various walk-
ing motions in a compact dataset. We also proposed uti-
lizing this sensing configuration and the stored knowledge
to achieve effective walking estimation. This method inte-
grates changes in walking form using a transition diagram
and state estimation using an extended Kalman filter (EKF).
Experiments showed that our method worked well when ap-
plied to actual human motion.

As a next step, we plan to add typical non-cyclic mo-
tions, such as stumbling. Also the system needs to focus
on not only motions on flat ground but also on stairs. In
addition, the system must be able to handle unknown envi-
ronments.
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