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Abstract— In this paper the robotic throwing task is consid-
ered with the goal of achieving high-speed dynamic manipu-
lation. We propose a kinetic chain approach for swing motion
focused on torque transmission. In addition the release method
using a robotic hand is analyzed for ball control. Experimental
results are shown in which a high-speed manipulator throws a
ball toward a target.

I. INTRODUCTION

Recently highly efficient robotic components have lead

to various robot improvements such as multi-fingered hands

and biped walking robots that have more extendibility than

previously. In terms of motor performance, however, there

are few robots equipped with quickness.

Fast movement for robot systems provides not only im-

provement in operating efficiency. And high-speed robotic

control has great potential to enable performance of new

skills and new applications. For example some previous

studies have been reported such as dynamic regrasping [1]

and high-speed batting [2]. However, there is little previous

work where high-speed hand-arm coordination manipulation

is achieved.

In this paper we report on experiments on the robotic

throwing motion using a hand-arm system as shown in

Fig.1. First a strategy for arm control is proposed based on

the ”kinetic chain” which is observed in human throwing

motion. This strategy produces efficient high-speed motion

using base functions of two types derived from approximate

dynamics. Next the method of release control with a robotic

hand is represented based on analysis related to contact state

during a fast swing. The release method employs features

so that the apparent force, almost all of which is generated

by high-speed motion, plays a roll in robust control of the

ball direction. Finally our high-speed manipulation system is

described and experimental results are shown.

II. SPEEDING UP SWING MOTION

In this section we extract a motional framework for

producing high-speed movement based on human swing

motion. The proposed swing model can be adapted to any

two-link robot arm with rotational joints. It is possible to

convert model-based motion into motion corresponding to

actual equipment even if there are differences in kinematics

between them.
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A. Human Swing Motion

We see human motion at tremendous speeds in sports.

For example the speed of an elbow joint in the throwing

motion can be up to 40 [rad/s] [3]. However the observed

torque of triceps brachii, which generates the elbow motion,

is remarkably low considering the speed. Focusing on the

speed or power in distal upper extremity, their values are dra-

matically increased just before release time. This is because a

human has a mechanism to explosively radiate kinetic energy

accumulated from the early stages of a swing motion. This

mechanism is called ”kinetic chain” and it achieves high-

speed swing motion efficiently. Two factors are particularly

important.

One is two-dimensional kinetic chain, which means power

transmission [4]. This motion has characteristics so that the

peak of the velocity waveform is continuously moved from

the body trunk to the distal part.

The other is three-dimensional kinetic chain. This means

the effect of motion generated by rotation about axes, the di-

rections of which are different from each other like gyro [5].

B. Swing Model and Its Dynamics

We propose a swing model to constitute the framework of

kinetic chain. Figure 2 shows the swing model composed

of the upper arm and the lower arm. This model has a

total of 3-DOF and consists of two revolution joints (q1, q3)

at the shoulder and the elbow respectively and a coupled

bending joint (q2) to keep the lower arm horizontal. This

model corresponds to the above two factors of kinetic chain

as described below.

• Axis-1 and axis-3 are parallel. The state with the elbow

in extension (q2 = π/2) results in two-dimensional

planar model.

• Axis-2 is perpendicular to other axes. The rotation about

axis-2 produces 3D interferential action.

Next we derive the equation of motion. To simplify the

problem, we ignore the moment of inertia. Gravity is also

Target

Fig. 1. Throwing motion using a hand-arm system
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Fig. 2. Swing Model

ignored to clarify the effect of interaction between joints.

Because of this assumption the dynamics does not depend

on the choice of coordinate system, so the model can

accommodate various types of throwing such as overhand

pitch, sidearm pitch and underarm pitch.

The torque τ is computed as

τ = M(q)q̈ + h(q, q̇) , (1)

where M(q) is the inertia matrix, h(q, q̇) is the coriolis and

centrifugal force term. Those elements are represented as

M22 =J1+4J2C
2

3
+4A12S2C3+B2 ,

M23 =M32 =−A12C2S3 , M33 =J2 ,

h2 =−
1

2
(J1+B2) sin(2q2)q̇

2

1
−4J2 sin(2q3)q̇2q̇3 (2)

−A12C2C3(2q̇1q̇3+q̇2

3
+2q̇2

2
+q̇2

1
)−4A12S2S3q̇2q̇3 ,

h3 =2A12C2C3q̇1q̇2+A12S2S3(q̇
2

2
+q̇2

1
)+2J2 sin(2q3)q̇

2

2
,

where Si≡sin qi and Ci≡cos qi. Other constant parameters

are defined as follows;

J1 = m1L
2

1g , J2 = m2L
2

2g , (3)

A12 = m2L1L2g , B2 = m2L
2

1
,

where mi, Li, Lig corresponding to i-th link means the

mass, the entire length and the length to center of gravity

respectively. We assume that the parameter including m1

is larger than other parameters because the upper arm is

generally heavier than the lower arm;

J1 ≫ J2 , A12 , B2 . (4)

C. Decomposition into Base Functions

The essence of the kinetic chain approach is efficient

transmission of power from body trunk to distal part. Because

in this model joint-1 represents the source of power, the

motion driven by the interaction is desirable behavior for

joint-2 and joint-3. Therefore we set τ ≃ 0 except for joint-

1;

M(q)q̈ + h(q, q̇) ≃ 0 . (5)

Suppose that joint-1 can output higher power than the

other joints and achieve steady state high-speed rotation

instantaneously;

q̇1 ≫ q̇i (i �= 1) , (6)

q̇1 = constant, q̈1 = 0 .

time

velocity

time

shoulder

finger

velocity

body trunk

(each body part) (end-effector)

Fig. 3. Superposition of base functions

1) Motion of Joint-2: To obtain motion in joint-2, the

vector q̈ = [0, q̈2, 0]T is substituted for Eq.(5) thereby setting

joint-3 in continuous uniform motion q̈3 = 0. The dynamics

of joint-2 is approximated using the above assumption;

(J1 + B2)q̈2 −
1

2
(J1 + B2)q̇1

2 sin(2q2) ≃ 0 . (7)

If we express sin 2q2≃2q2 using the first-order approxima-

tion of the Taylor series, this equation becomes a second

order differential equation for q2. The solution is

q2 ≃ α2 exp (ω2t + φ2) , (8)

where ω2, φ2 and α2 are frequency, phase, and amplitude

respectively. That is an exp-type base function representing

a three-dimensional interaction of inertia force.

2) Motion of Joint-3: To obtain motion of joint-3, the

vector q̈ = [0, 0, q̈3]
T is substituted for Eq.(5) thereby setting

joint-2 in continuous uniform motion q̈2 = 0. The dynamics

of joint-3 is approximated using the above assumption;

J2q̈3 + A12q̇1
2S2S3 ≃ 0 . (9)

If we express S3≃q3 using the first-order approximation of

the Taylor series and consider S2 as constant, this equation

becomes a second order differential equation for q3. The

solution is

q3 ≃ α3 sin (ω3t + φ3) , (10)

where ω3, φ3 and α3 are frequency, phase, and amplitude

respectively. That is a sin-type base function representing

the two-dimensional kinetic chain.

Although we can calculate the frequency parameters ω by

Eqs.(7) and (9), these equations are rough approximations of

the dynamics. Therefore we calculate the frequency param-

eters as well as other unknown parameters φ,α in the next

section. In addition we also set the trajectory of joint-1 as

a sin-type base function. We express parameters concerning

the base function as

ξT =
[

ωT φT αT
]

. (11)

The constant term c is added to the base functions to ensure

continuity of motion. Then the trajectory of joint angles is

q(ξ, t) =





α1 sin (ω1t + φ1) + c1

α2 exp (ω2t + φ2) + c2

α3 sin (ω3t + φ3) + c3



 . (12)
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Fig. 4. Change of joint angle q2 with respect to angular velocity

The trajectory of velocity and acceleration is the same type

of function. Because the behavior of exp-type functions is

monotonically increasing (or decreasing), we change the sign

of ω2 at a certain time to decelerate swing motion.

D. Superposition of Base Functions

We synthesize the decomposed base functions so that the

speed of the end-effector is increased as shown in Fig.3. The

velocity of the end-effector ṙE is represented as a function

f of base function parameters and the time variable:

ṙE = f(ξ, t) . (13)

In each joint the start time tsi and the termination time tei

of the swing are defined by Eq.(12) so that the joint velocity

equals zero;

tsi =
−φi − π/2

ωi

, tei =
−φi + π/2

ωi

. (14)

Although the joint velocity for exp-type functions does not

go to zero exactly, the time is defined in a similar way.

Under the kinematics constraint and dynamics constraint,

the parameter ξ is set so as to maximize the following

evaluation function:

max
ξ, t

ṙT
EKrṙE (15)

subuject to

q
min

≤ q≤ q
max

, q̇
min

≤ q̇≤ q̇
max

,

τmin≤ τ ≤ τmax , ts ≤ t ≤ te ,

where Kr is a positive definite matrix, ts = min tsi, te =
max tei, and a suffix max or min means the maximum and

minimum of the variable respectively. This computation is

equivalent to maximizing the translational kinetic energy of

the end-effector motion when Kr = diag[1
2
me,

1

2
me,

1

2
me],

where me is the effective mass of the end-effector.

E. Simulation

For optimization, we set the constraint using data from the

barrett arm, which is described in section IV-A. The SQP

method was used as the optimized calculation.

The change in joint angle q2 with respect to joint velocities

q̇1, q̇3 is shown in Fig.4. The left figure shows the case where

q̇1 is constant and q̇3 varies. The right figure shows the
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Fig. 5. Time response of joint velocity and joint torque

q2

q1

q3

z

γ
(fixed)

Fig. 6. Analogous Swing Model

reverse case. In those figures the frequency of joint-2 depends

not on q̇3 but on q̇1. Because this result corresponds to the

behavior of Eq.(7), it proves the validity of the approximation

of the dynamics. In addition it turns out that joint-2 oscillates

around q2 = π/2. This means that the apparent force acts

so that it extends the arm as in a human throwing motion.

The oscillation is attributable to the mechanism of rotational

joints.

Figure 5 represents the time response of joint velocity and

torque. In the left figure it turns out that the trajectories of

both joint-1 and joint-3 are expressed by a sin-type function

and the trajectory of joint-2 is expressed by an exp-type

function. In the sin-type trajectories we can observe the

transition of peak time as a typical characteristic of planar

kinetic chain. The torque of joint-1 increases sharply from

the start time t=0. On the other hand the torque of joint-2

gradually goes to zero although joint-2 also gets into motion.

This is as expected for an exp-type function. At t = 0.26
the torque of joint-2 decreases dramatically. This is because

the motion of joint-2 switches to decreasing speed due to

the constraint of joint angles against the force heading to

q2 =π/2. Moreover joint-3 moves fast despite the low torque

of joint-3 during its motion. This is as expected for a sin-type

function.

F. Analogous Swing Model

Let’s consider the analogous swing model shown in Fig.6.

The difference between the two models is the placement of

joint-2. The angle γ between axis-1 and the upper arm is

fixed. We calculate the dynamics of this model and simulate

swing motion in a similar way.
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Fig. 7. Contact model between a hand and a ball

The dynamics of joint-2 is approximated as

J2q̈2 −
1

2
J2q̇

2

1
sin(2(γ + q2)) ≃ 0 . (16)

This equation is solved with an exp-type function. The

motion of joint-2 oscillates around q2 + γ = π/2. The

dynamics of joint-3 is approximated as

J2Sγ2q̈3 + A12q̇
2

1
SγS3 ≃ 0 . (17)

This equation is solved with a sin-type function.

The analogy between the two models shows the following

behavior of high-speed swing motion. The rotations about

parallel axes produce a planar sin-type kinetic chain. More-

over rotation about the axis which is perpendicular to the

parallel axes produces an exp-type kinetic chain. This motion

oscillates around the plane that is perpendicular to the sin-

type axes.

We adopt the latter model in the experiment for the

following reasons. First, the speed is limited to some extent

in the former model because of the constraint of joint angle

q2. Second, the latter model requires less compensating

torque for gravity than the former one.

III. CONTROL OF A THROWN BALL

In this section we analyze the model of the contact state

between a hand and a ball. Next the method for ball control

is described.

A. Modeling of Contact State

Suppose that a hand and a ball are both rigid bodies. The

equation of ball motion in the coordinate ΣE moving in

translational acceleration α0 and angular velocity ω0 against

standard coordinate Σ0 is expressed as

mr̈′ =F ′ + g′ − m(α′

0
+ ω̇′

0
× r′)

+2mṙ′ × ω′

0
+ m(ω′

0
× r′) × ω′

0
, (18)

where m is mass of the ball, r is ball position, F is contact

force, g is gravity force, and a suffix ′ means that the variable

is expressed in the coordinate ΣE . The third term is the

inertia force due to accelerated motion, the fourth term is

the Coriolis force, and the fifth term is the centrifugal force.

Since the throwing motion includes three dimensional fast

rotatory motion, Eq.(18) contains the considerable effect of

the apparent force peculiar to a non-inertial system.
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Fig. 8. Relation between normal force and rolling distance

The motion of the hand is set to throw a ball by following

three steps.

( i ) The hand grasps the ball with three fingers so as not

to drop it until a given time.

( ii ) The contact state is switched to two-finger contact by

releasing one finger at a certain time.

(iii) The two fingers move in the same way and release the

ball while the ball rolls along the fingers.

Suppose that the x-axis is set along the two fingers for

release, the y-axis is perpendicular to the plane of the two

fingers, and the z-axis is set so that the three axes constitute

orthogonal coordinates as shown in Fig.7. The condition

where the ball with radius a and moment of inertia I =
2

5
ma2 rolls at angles φ without sliding is represented as

Iφ̈ = aF ′

x, x′ = aφ . (19)

Since the ball cannot be moved in the y-axis and z-axis until

release time, the following conditions are satisfied:

y′ = ẏ′ = ÿ′ = 0, z′ = ż′ = z̈′ = 0 . (20)

The dynamics of rolling motion is calculated as follows when

Eqs.(19) and (20) are substituted for Eq.(18):

ẍ′ =
5

7

{

−α′

0x + g′x + (ω′

0y

2
+ ω′

0z

2
)x′

}

. (21)

Similarly, the normal force F ′

y is computed as

F ′

y = m
{

α′

0y − g′y + 2ω′

0zẋ
′ + (ω̇′

0z + ω′

0x

2
)x′

}

. (22)

The ball is released from the fingers when the normal force

is reduced to zero or less. Then we analyzed the relation

between the normal force and the motion of rolling.

Figure 8 shows the rolling distance and the normal force

under varying conditions. Depending on the conditions of the
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acceleration and the posture of the manipulator, the ball can

roll in either the positive or negative direction, or the hand

sometimes releases the ball without the effect of a normal

force as soon as the grasping finger is released from the ball.

The faster the manipulator moves, the longer generally the

rolling distance is. However the rolling distance cannot be

dramatically increased. It is only a few centimeters. This is

because the motion time becomes short until release of the

ball, while fast motion brings fast speed of rolling. Therefore

we assume that the ball is released before it rolls to the

fingertip.

B. Released Ball Motion

The velocity of the ball expressed in standard coordinates

is calculated as follows:

v = v0 + Rṙ′ + ω × Rr′ , (23)

where v0 is translational velocity of the end-effector, and R
is a rotation matrix from Σ0 to ΣE . If the rolling distance

is short, the above equation can be approximated as v ≃

v0+Rṙ′. That is, throwing direction depends mainly on the

translational velocity of the end-effector and rolling velocity

of the ball.

C. Strategy for Ball Control

Based on the above results, two elements are important to

ball control. One is control of release timing and the other

is control of the direction of release. These two elements

are greatly affected by the translational acceleration and the

translational velocity respectively. However it is difficult to

control these variables in parallel with high accuracy. In

addition it is difficult to positively apply the rolling motion

to directional control. Therefore we propose a strategy for

ball control in which the rolling motion acts secondarily to

maintain the throwing direction.

(a) Arm kinematics (b) Hand-Arm system

X1, X2, X3

Z1, Z3

Y2

Y1, Z2, Y3

Z4

Y4

X4

Fig. 10. High-speed manipulator system

1) Release Timing: We control the hand so that release of

grasping finger and release of the ball are performed at the

same time. Because both rolling distant and rolling velocity

are zero at release time, the normal force is represented as

F ′

y =m(α′

0y−g′y) by Eq.(22). Therefore the grasping finger

is controlled to release the ball when the following condition

is satisfied;

α′

0y < g′y . (24)

2) Release Direction: We control the hand so that the

ball is released in the tangential direction of the end-effector

trajectory at release point. This condition of control is

represented as

v′

0x = 0, α′

0x < 0 . (25)

The rolling acceleration near release point is expressed as

ẍ′= 5

7
(−α′

0x+g′x) by Eq.(21). Therefore the ball rolls toward

distal direction of the finger if α′

0x <g′x. On the other hand

the velocity of the finger just after release is v′
0x < 0 by

Eq.(25). This result means that if the ball is not released at

the desired release time due to some errors, the rolling of

the ball affects the release direction of the ball toward the

target as shown in Fig.9. As a result robust control of the

ball is achieved.

IV. EXPERIMENTS

A. System Configuration

The arm is a wire-drive manipulator (Barrett Technol-

ogy Inc.). The kinematics of the manipulator is shown in

Fig.10 (a). The manipulator has 4-DOF consisting of alter-

nately revolution and bending motion. High-speed movement

with maximum velocity of the end-effector of 6 [m/s] and

maximum acceleration of 58 [m/s2] is achieved.

The hand consists of three fingers and a wrist. It has 10-

DOF in total. A small harmonic drive gear and a high-power

mini actuator are fitted in each finger link [6]. The design of

this actuator is based on the new concept that maximum

power output, rather than rated power output, should be

improved. The hand can close its joints at 180 [deg] per

0.1 [s]. Its maximum velocity is 300 [rpm], and the maximum

output is 12 [N].

Figure 10 (b) shows the hand-arm system.

3210



manipulator

posture

end-effector

trajectory

x [m]
y [m]

z
 [
m

]

1.2

0.8

0.4

0

0.5

-0.5
0

0.5

-0.5
0

8

4

0

-4

-8
0 0.5 1.0 1.5

Joint 1

Joint 2

Joint 3

time [s]

jo
in

t 
v

e
lo

ci
ty

 [
ra

d
/s

]

(a) Three dimensional trajectory (b) Joint velocity

Fig. 11. Experimental data of manipulator motion

B. Experimental Setting

The manipulator threw a urethane ball with radius 5 [cm]

towards the target from 3 [m] distance. The target is a net

with radius 10 [cm]. The dynamics of the swing model is

transformed to the one corresponding to the arm shown

in Fig.10 (a) due to the difference between mechanisms. In

addition we adopted a gravity-compensated PD controller

so as to enable accurate control of high-speed movement.

Because the swing motion is generated so that Eq.(5) is

satisfied, this simple controller plays an equivalent role as

well as following the computed torque method;

τ = g(qd) + Kp∆q + Kv∆q̇ (26)

≃ M q̈d + h(qd, q̇d) + g(qd) + Kp∆q + Kv∆q̇ .

C. Experimental Result

Figure 11 (a) shows the trajectory of the end-effector. It

turns out that the motion in the z-axis direction oscillates

around the height of the elbow. This is caused by the

exp-type function. The time response of joint velocities is

shown in Fig.11 (b). It turns out that both joint-1 and joint-3

correspond to a sin-type mode while joint-2 corresponds to

an exp-type mode. The figure also indicates that accurate

control on fast swing motion is achieved even by the simple

controller except the overshoot of joint-1.

In Fig.12 and Fig.13, the change in contact state and

the trajectory of a thrown ball are shown as a continuous

sequence of pictures taken at intervals of 100 [ms] and

66 [ms] respectively. It turns out that grasping state with three

fingers is switched to release state with two fingers, and then

the ball is thrown toward the target.

The success rate was about 40 %. Failure was caused

mainly by uncertainty in initial calibration of the grasping

state and deviation from the contact model due to the elastic

element of the ball. Accordingly, a tactile or force feedback

control would improve the success rate. These experimental

results are shown as a movie on the web site [7].

V. CONCLUSIONS

In this paper we presented a strategy for high-speed swing

motion based on the kinetic chain approach. In addition,

we analyzed the contact model for ball control. From this

analysis, robust control of release direction was proposed.

Fig. 12. Serial photographs of the change in contact state

Fig. 13. Serial photographs of a ball thrown toward a target

As a result, the ball control in high-speed throwing motion

was achieved using the hand-arm system.

Our future work will concentrate on a detailed robustness

evaluation of ball control, and an adoption of tactile or force

feedback control. Moreover we plan to control other high-

speed dexterous manipulations with hand-arm coordination.
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