
Learning Skill for Enhancing the Capability of Artifitial System
Yutaka Sakaguchi, University of Electro-Communications (sakaguchi@is.uec.ac.jp)

————————————

Adaptive Dynamics Matching in Sensory-Motor Fusion System
and Its Implementation by Reinforcement Learning

Naoko Ogawa1, Yutaka Sakaguchi2, Akio Namiki1,3, and Masatoshi Ishikawa1

1 Graduate School of Information Science and Technology, University of Tokyo.
2 Graduate School of Information Systems, University of Electro-Communications.

3 CREST, JST, Japan.

1 Introduction

Recent progress in hardware devices and
computer technologies has substantially con-
tributed to making robotic systems more pow-
erful and flexible. High-torque actuators have
facilitated robot motions [1] and high-speed
computers have realized natural and intellec-
tual behaviors. At the same time, however, in-
crease in the system’s complexity is making it
more difficult to design a system whose individ-
ual components display their potential abilities.
Even with a high-speed actuator, for example,
a system cannot utilize its ability if the sensing
component is too slow compared to the actua-
tor. In another case, a high-speed sensing com-
ponent, such as 1ms vision system [2], could
not demonstrate its ability unless the process-
ing component cannot finish data processing
within a specific time. Therefore, it is essen-
tial to balance the temporal characteristics of
system components (i.e., sensors, actuators and
data processing) in order to draw their poten-
tial abilities to the full. In the previous study,
the authors pointed out the importance of this
problem and proposed a concept of “dynamics
matching” or “dynamics adjustment”[3], mean-
ing to maximize the performance of a sensory-
motor fusion system under external and phys-
ical constraints, through adjusting dynamical
characteristics of its components.

Some may think of this concept as a matter of
course. It is sure that engineers and designers
usually tune the system specification appropri-
ately so as to satisfy the task requirement. In
most cases, however, such tuning is carried out
in a case-by-case style, and based on engineers’
own experience and intuition: Few studies con-
sidered this problem in an explicit and system-
atic manner. Rather, most theories on robotics

tended to treat the performance of hardware
devices and of processing system, separately.
For example, mechanical dynamics is one of the
major subjects of robotic research [4, 5], but
the processing component has been hardly in-
corporated in its control theory, and it has not
been discussed how the performance of process-
ing system affected the control rule. In the re-
search on higher functions of robotic systems
(such as path planning), on the other hand,
real-time dynamics is almost ignored. Resource
allocation to multiple jobs is an important topic
in a parallel processing system [6, 7], but their
discussion cannot be applied to robotic systems
because of its lack of physical viewpoints.

In general, there are two methodologies to
realize the dynamics matching in a robotic sys-
tem. One is to determine the specification of
the components at the stage of designing a sys-
tem. Although this off-line methodology can
guarantee the performance in considered situa-
tions, it has some limitations. First, it is diffi-
cult in most cases to estimate the system’s total
performance before running the system in an
actual environment. Second, the system can-
not adapt to the environment and task changes
once the system configuration is fixed at the de-
sign stage. The other methodology is to adjust
the system configuration in an on-line manner,
with monitoring its performance. With this
methodology, the system can find an optimal
configuration by itself and modify the configu-
ration according to the environment and task
changes, though its initial performance is ex-
pected to be low. The present discussion will
be focused on the latter methodology.

The objective of the present report is to show
the way to formulate the dynamics matching
problem as an optimization problem, and to
describe an algorithm to solve it by on-line

1

Constraint

Adjustable Parameter

c

p

p*

P p c
0()j

c 0

cpP(,)
Maximum Performance under c 0

Given
Constraint

Performance

Opitmal Parameter

Figure 1: A Scheme of dynamics matching

learning. Specifically, the authors introduce
a method for adaptive assignment of compu-
tational resource under given hardware con-
straints and task requirements. Moreover, we
implement a sample algorithm based on rein-
forcement learning and illustrate its behavior
by numerical experiments.

2 Dynamics Matching by On-
Line Learning

2.1 Dynamics matching as an opti-
mization problem

It is necessary to consider a number of proper-
ties in designing a robotic system, as pointed
out above. Here, we classify these properties
into two groups, those that the system can ad-
just and those that the system cannot adjust,
and name the former “adjustable parameters”
p and the latter “constraints” c. For example,
the hardware specification (e.g., the maximum
torque of a motor) and task requirement be-
long to the “constraints” because they cannot
be changed by the system. On the other hand,
the sensor parameters (e.g., sampling rate) and
processing algorithm are the “parameters” be-
cause the system can select in an on-line man-
ner.

Under this preparation, the dynamics match-
ing can be formulated as a problem to find
the optimal parameter value under given con-
straints so as to maximize the system perfor-
mance.

Figure 1 schematically illustrates the struc-
ture of this optimization problem. The bot-
tom plane in the figure represents the space

p

Performance

Parameter

c

Constraint

Action

Reward
()P p c

0
j

cc 0=

p¢

State

Figure 2: Dynamics matching by reinforcement
learning

of the system properties, which can be decom-
posed into the parameter space and the con-
straint space. The vertical axis represents the
system performance P . When we specify the
hardware specification and the task, the con-
straint is fixed to a specific value c′. Then, our
objective is to find the optimal parameter p∗

in the cross-section of the performance surface
P (p, c) and the hyper-plane c = c′, that is, to
find p∗ defined as

p∗ = argmax
p

P (p|c′).

Because the system does not know the re-
lation between parameter p and performance
P (p|c′), this problem cannot be solved by an
analytic algorithm, such as the steepest ascent
method. Instead, the system has to explore
the parameter space and to estimate the perfor-
mance in order to find the optimal parameter.
Among several methods to realize such explo-
ration, here we adopt a trial-and-error method.
To be more specific, we will solve this problem
using reinforcement learning.

2.2 Dynamics matching by reinforce-
ment learning

Reinforcement learning (RL) is a learning algo-
rithm to find an action-selection policy maxi-
mizing the expected reward received from the
environment [8]. In order to apply this algo-
rithm to the dynamics matching, we formulate
this problem as shown in Figure 2.

First, a value of the adjustable parameter
p and the corresponding performance P (p|c′)
are regarded as a “state” and “reward,” re-
spectively. This comes from the fact that the

2

system tries to find the state (i.e., parame-
ter) maximizing the total reward (i.e., perfor-
mance). On this assumption, an “action” cor-
responds to a change in the parameter value. In
this framework, therefore, the dynamics match-
ing is realized by repeating the following pro-
cedure:

1. Read the current values of parameters
(state observation),

2. Refer to the value function Q(p,∆p) and
choose ∆p according to some action-
selection policy (action selection),

3. Change the parameter value according to
∆p (state transition),

4. Perform the given task with the new pa-
rameter value, and evaluate the perfor-
mance (reward acquisition), and

5. Update the value function V based on
the received reward (value function inno-
vation).

Although the general algorithm is very sim-
ple, the detailed implementation should be de-
termined dependent on the individual prob-
lem.1 In the next section, the authors take
target-tracking as an example, and explain an
implementation of the above algorithm.

3 Dynamics Matching in a

Target-Tracking System

3.1 Target-tracking task

A target-tracking task is to find a control rule
for a moving camera to follow a moving object
in a space: The system has a camera mounted
on a motor-controlled platform, and controls
the motor so that the camera catches a target
in its visual field. The authors pick up this task
because it includes all of sensing, information
processing and control processes and because it

1Some people may suspect why reinforcement learn-
ing is used here, rather than a simple exploration
method. This suspicion is reasonable because the sys-
tem need not update the parameter once it reaches the
optimal one. Though it may be “over specification” to
use reinforcement learning in the current formulation,
it is for a future extension treating the case that the
system’s characteristics change over time.

Target
Trajectory

Visual Field

Camera
Trajectory

Predicted Target Positions ()

t + 1

t + 3

t + 2

Observed Target Positions ()t - 2

t - 1

Planned
 Camera Positions ()

Past Camera Positions ()

Figure 3: A 2D target-tracking task

has been commonly used in discussing the per-
formance of active vision system. For the sake
of simplicity, the authors deal with 2D tracking
where the target motion is restricted to a 2D
plane (or the system deals only with the direc-
tion of the target), as illustrated in Figure 3.

Here, we assume that the target motion is
so fast that the system cannot track it only by
feedback control, and thus, the system utilizes
the predictive control using an internal model
of the motion. That is, the system predicts the
future trajectory of the target and utilizes this
prediction for planning to camera control.

3.2 Real-time requirement and
trade-off in information process-
ing

In Section 2.1, we classified the system prop-
erties into constraints and adjustable parame-
ters. In the target-tracking task, the limitation
of camera system (i.e., hardware specification)
and the target motion (i.e., task requirement)
correspond to the constraints while selection of
processing algorithms corresponds to the ad-
justable parameter. In concrete, we take the
visual field size of the camera (sensor’s limita-
tion) and the maximum speed of the camera
mount (actuator’s limitation) as the hardware
specification. On the other hand, we think of
several kinds of target motion as the task re-
quirement.

As for the processing algorithms, we pos-
tulate “prediction of the target position” and
“planning of the camera motion.” The predic-
tion is performed with an internal model of the
target motion, which receives the current tar-
get position and velocity and outputs the tar-
get’s future position. Here, it can be imagined

3

that more steps of prediction would reduce the
risk to lose the target from the visual field in
the future because the system can make use
of those positions for motor planning. On the
other hand, the planning of camera motion is
to specify the next camera position based on
the predicted target position and the actuator’s
limitation (i.e., maximum motion speed). It is
performed in an iterative manner so that the
tracking performance is improved with more
steps of iteration.

It is obvious that the system can achieve bet-
ter performance if it spends more time for both
these processes. In actuality, however, the sys-
tem has to finish these computations within a
control cycle for real-time control of the camera
movement. This means that there is a trade-off
between the resources dedicated to the two pro-
cesses: Too much prediction deteriorates the
tracking performance while too much planning
increases the risk to lose the target.

In order to treat this trade-off in a simple
manner, we assume that the sum of the steps of
prediction and of iteration is fixed to a constant
(n), and use the number of prediction steps (k)
as the index of the balance between two pro-
cesses. Thus, k is regarded as the adjustable
parameter of the system.

Since our algorithm treats the parameter as
the “state” of the RL system, thus, the in-
dex k gives the “state.” Then, “action” cor-
responds to an operation to update k. Here,
we think of three actions: To increase, to de-
crease and to keep the value of k (Note that
k takes a one-dimensional value). Finally, “re-
ward” is determined by the mean square error
between the observed target position x(t) and
the predicted target position xp(t) over N time
steps, 2 that is, P = 1/N

∑N
t=1 |e(t)|2, where

e(t) = x(t)− xp(t). Specifically, the reciprocal
of the average error (i.e., 1/P) is utilized as the
reward to the system so that the reward should
be greater with less observation error.

The structure of the proposed system is sum-
marized in Figure 4.

2Perhaps, it is also possible to measure the perfor-
mance using the distance between the observed target
position and the center of the visual field.

Camera Actuator

Observed
Target Position

Predictive
Error

Prediction Step k

Planned Trajectory

1/Σ

Q-Learning Module

Planning Process

State
Action

Reward
Process
Trade-Off

Q-Fn. Action
Selector

kast

rt

x

xp

e

Camera Poisition

Relative
Target Position

Internal
Model

Predictor

Prediction Process

Trajectory
Planner

Controller

Averaging

Predicted
Target Position

Processing System

Optimization System

Actuator
Limitation

Control SystemSensor System

+

+

Target

Error
Signal

Iteration Step n-k

Figure 4: Structure of the proposed system

4 Numerical Experiment

The authors ran some numerical experiments to
examine whether the above algorithm worked
as expected. Below, we will show some prelim-
inary results.

4.1 Assumptions

Since we would like to focus the discussion on
adjusting the balance between prediction and
planning, we first postulated that the camera
sensor and actuator had ideal characteristics.
In concrete, it was assumed that the delay in
the camera’s sensory processing and observa-
tion errors in camera measurement were neg-
ligible, and the control system achieved the
planned camera position without delay or er-
ror.

Second, the authors considered the type of
target motion (c), size of the visual field (d)
and maximal speed of the camera actuator (v),
as the constraints. These values were set by
the experimenter, and never changed by the
system. In the actual experiments, target mo-
tion was chosen from 3 ellipsoidal motions and
one Brownian (i.e., completely random) mo-
tion. Visual field size d and maximum actu-
ator speed v were chosen from 6 and 9 values,
respectively.

4

Third, as for the internal model of the target
motion, a second-order linear model written as

x = Ax + b (1)

was prepared. The system parameters A and
b took arbitrary values in the initial state, and
were updated by an on-line supervised learn-
ing. In trajectory planning, we used an itera-
tive method where the camera position became
closer to the predicted position in a stepwise
manner. Specifically, the trajectory was first
set as a straight line toward the furthest pre-
dicted position (i.e., position at time t+k), and
then updated so that the camera trajectory got
close to the predicted target trajectory for the
intermediate steps (i.e., positions at t+1, t+2,
· · · , t + k − 1).

Finally, Q-learning[8] was adopted as the
learning algorithm, where the value function
was updated by

∆Q(kt, a)

= α

(
rt + γ max

a′ Q(kt+1, a
′) − Q(kt, a)

)
,

(2)

where k was 0, 1, 2, 3 or 4. It should be noted
that the value function Q is formally dependent
on the constraint c. The above equation does
not include c just because the constraint was
fixed so far as the task and environment were
not changed. On the other hand, the action
selection probability Pr(a) was given by

Pr(a) =
exp(βQ(kt, a))

Σa′ exp(βQ(kt, a
′))

, (3)

according to the Boltzmann rule. Parameters
for Q-learning were α = 0.01, β = 0.05 × (#
of elapsed episodes), γ = 0.999, N = 30, # of
episodes = 100,000.

4.2 Results and discussions

First, we show two examples of the system’s
behavior. Figure 5 presents the target position
(circle), the center of the visual field (cross),
and the visual field (square), in certain exper-
imental sessions. The upper and lower pan-
els show the results in a slow and a fast ellip-
soidal motion conditions, respectively. In the
slow-motion condition, the center of the camera
field and the target almost coincided, implying

-600 -400 -200 0 200 400 600
x [mm]

y
[m

m
]

Actual Trajectory
Predicted Positions
Center of Visual Field

-200

-400

-600

200

400

600

0

(a) Slow Target Motion

-600 -400 -200 0 200 400 600
x [mm]

y
[m

m
]

Actual Trajectory
Predicted Positions
Center of Visual Field

-200

-400

-600

200

400

600

0

(b) Fast Target Motion

Figure 5: Examples of system behavior

that the system succeeded in tracking the tar-
get faithfully. In this case, the system found
one prediction step (k = 1) as the best solution
to the dynamics matching. In the fast-motion
condition, in contrast, the camera caught the
target in the “peripheral” of the visual field. In
this case, the system chose two steps of pre-
diction (k = 2), meaning that multi-step pre-
diction was required to track the target: The
system compensated the relatively low control
ability by making use of multi-step prediction
and its visual field.

The authors ran the experiments for a num-
ber of combinations of the constraints c, d
and v, and examined the prediction steps af-
ter enough steps of learning. Figure 6 sum-
marizes the result. Figure 6 (a) shows average
prediction steps during the last 2,000 episodes
for four types of target motion (i.e., three ellip-
soidal motions and a Brownian motion) in the
condition d = 250 mm and v = 200 mm/step.
Darkness of each block represents the predic-
tion steps (Darker blocks represent greater pre-
diction steps. Darkness changes continuously
though only discrete values are indicated in the
scale). We can see that the block is darker for
a faster target motion, indicating that the sys-
tem chose more prediction steps (larger k) for

5

100

200

300

250 500

M
ax

im
um

 S
pe

ed

 [m

m
/s

te
p]

Visual Field Size [mm]
Ellipsoidal

Motion
Brownian

Motion

Target Motion

d

v

(b) Effect of Hardware Specification(a) Effect of Task Requirement

FastSlow

Obtained
Prediction Step

0 1 2 3k = 4

Figure 6: Acquired prediction steps

faster motion. On the other hand, the chose
a smaller value of k for the Brownian motion.
This is also reasonable because it is of no use
to predict the target position when it moves
completely at random.

Such solutions were dependent not only on
the target motion but also the hardware spec-
ification: If the specification was different, dif-
ferent values of k should be chosen even for an
identical target motion. Figure 6 (b) shows the
result for 54 combinations of d and v with an
ellipsoidal target motion. Although there are
various local fluctuations, we can see a global
tendency that the blocks become darker in the
left lower direction, that is, for smaller values
of d and v. This implies that the system chose
a larger value of k for a smaller visual field and
for a lower maximum speed, i.e., in the cases
that the system had less tracking ability.

These results can be interpreted as follows.
When the task requirement is enough low com-
pared to the hardware limitation, it is a good
strategy to plan a faithful camera trajectory
and catch the target at the center of the visual
field, without spending much time for predict-
ing target trajectory. When the task require-
ment is severe, in contrast, the system should
predict the target position for the further fu-
ture (i.e., to increase k) with sacrificing faithful
tracking, in order not to lose the target from
the visual field. Above results show that the
system found these solutions by learning.

5 Concluding Remarks

In this report, the authors introduced the con-
cept of “dynamics matching” as a design prin-

ciple of sensory-motor fusion systems and ex-
plained a method to realize it by learning. The
aim of this report is to point out the importance
of the dynamics matching and to show its feasi-
bility by computer simulation. The method de-
scribed here is just an example; there are many
other possibilities to implement this idea in the
real system, and the designers could choose ap-
propriate methods according to the task and
situation. Various case studies will enrich our
methodologies to establish this design principle.

References

[1] W. T. Townsend and J. A. Guertin: “Tele-
operator slave-wam design methodology,”
Industrial Robot, vol. 26, no. 3, pp. 167–
177, 1999.

[2] M. Ishikawa, K. Ogawa, T. Komuro, and
I. Ishii: “A CMOS vision chip with SIMD
processing element array for 1ms image
processing,” 1999 Dig. Tech. Papers of
1999 IEEE Int. Solid-State Circuits Con-
ference (ISSCC’99), pp. 206–207, Feb.
1999.

[3] A. Namiki, Y. Nakabo, I. Ishii and M.
Ishikawa: “1ms sensory-motor fusion sys-
tem,” IEEE/ASME Trans. Mech., vol. 5,
no. 3, pp. 244–252, 2000.

[4] M. T. Mason and J. K. Salisbury: Robot
hands and the mechanics of manipulation,
MIT Press, 1985.

[5] M. W. Spong and M. Vidyasagar: Robot
dynamics and control, John Wiley & Sons,
1989.

[6] R. Nigam and C. S. G. Lee: “A
multiprocessor-based controller for
the control of mechanical manipulators,”
IEEE J. Robotics and Automation, vol.
RA1-4, pp. 173–182, Dec. 1985.

[7] G. C. Buttazzo: Hard real-time comput-
ing systems — Predictable scheduling algo-
rithm and applications, Kluwer Academic,
1997.

[8] R. S. Sutton and A. G. Barto: Rein-
forcement learning: An introduction, MIT
Press, 1998.

6

